Question 11.35: The worm shaft shown in part a of the figure transmits 1.2 h...

The worm shaft shown in part a of the figure transmits 1.2 hp at 500 rev/min. A static force analysis gave the results shown in part b of the figure. Bearing A is to be an angular-contact ball bearing mounted to take the 555-lbf thrust load. The bearing at B is to take only the radial load, so a straight roller bearing will be employed. Use an application factor of 1.2, a desired life of 30 kh, and a reliability goal, combined, of 0.99. Specify each bearing.

The worm shaft shown in part a of the figure transmits 1.2 hp at 500 rev/min. A static force analysis gave the results shown in part b of the figure. Bearing A is to be an angular-contact ball bearing mounted to take the 555-lbf thrust load. The bearing at B is to take only the radial load, so a

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Shafts subjected to thrust can be constrained by bearings, one of which supports the thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust force here is larger than any radial load, the bearing absorbing the thrust (bearing A) is heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may not contribute measurably to the chance of failure. If this is the case, we may be able to obtain the desired combined reliability with bearing A having a reliability near 0.99 and bearing B having a reliability near 1. This would allow for bearing A to have a lower capacity than if it needed to achieve a reliability of  \sqrt{0.99}. To determine if this is the case, we will start with bearing B.

Bearing B (straight roller bearing)

\begin{aligned}&x_{D}=\frac{30000(500)(60)}{10^{6}}=900 \\&F_{r}=\left(36^{2}+67^{2}\right)^{1 / 2}=76.1 lbf =0.339  kN\end{aligned}

Try a reliability of 1 to see if it is readily obtainable with the available bearings.

Eq. (11-6):      C_{10}=1.2(0.339)\left\{\frac{900}{0.02+4.439[\ln (1 / 1.0)]^{1 / 1.483}}\right\}^{3 / 10}=10.1  kN

The smallest capacity bearing from Table 11-3 has a rated capacity of 16.8 kN. Therefore, we select the 02-25 mm straight cylindrical roller bearing.

Bearing at A (angular-contact ball)
With a reliability of 1 for bearing B, we can achieve the combined reliability goal of 0.99 if bearing A has a reliability of 0.99.

\begin{aligned}&F_{r}=\left(36^{2}+212^{2}\right)^{1 / 2}=215  lbf =0.957  kN \\&F_{a}=555  lbf =2.47  kN\end{aligned}

Trial #1:
Tentatively select an 02-85 mm angular-contact with C_{10}=90.4  kN \text { and } C_{0}=63.0  kN.

\begin{aligned}&\frac{F_{a}}{C_{0}}=\frac{2.47}{63.0}=0.0392 \\&x_{D}=\frac{30000(500)(60)}{10^{6}}=900\end{aligned}

Table 11-1:    Interpolating, X_{2}=0.56, Y_{2}=1.88

Eq. (11-9):       F_{e}=0.56(0.957)+1.88(2.47)=5.18  kN

Eq. (11-6):

\begin{aligned}C_{10} &=1.2(5.18)\left\{\frac{900}{0.02+4.439[\ln (1 / 0.99)]^{1 / .483}}\right\}^{1 / 3} \\&=99.54  kN >90.4  kN\end{aligned}

Trial #2:
Tentatively select a 02-90 mm angular-contact ball with C_{10}=106  kN \text { and } C_{0}=73.5  kN.

\frac{F_{a}}{C_{0}}=\frac{2.47}{73.5}=0.0336

Table 11-1:     Interpolating, X_{2}=0.56, \quad Y_{2}=1.93

F_{e}=0.56(0.957)+1.93(2.47)=5.30  kN

 

C_{10}=1.2(5.30)\left\{\frac{900}{0.02+4.439[\ln (1 / 0.99)]^{1 / 1.483}}\right\}^{1 / 3}=102  kN <106  kN \quad \text { O.K. }

Select an 02-90 mm angular-contact ball bearing

_____________________________________________________________________________________________________________________________

Eq. (11-6): C_{10}=a_{f} F_{D}\left[\frac{x_{D}}{x_{0}+\left(\theta-x_{0}\right)\left(\ln 1 / R_{D}\right)^{1 / b}}\right]^{1 / a}

Eq. (11-9): F_{e}=X_{i} V F_{r}+Y_{i} F_{a}

Table 11–3
Dimensions and Basic Load Ratings for Cylindrical Roller Bearings
Bore, mm 02-Series 03-Series
OD, mm Width, mm Load Rating, kN OD, mm Width, mm Load Rating, kN
C_{10} C_{0} C_{10} C_{0}
25 52 15 16.8 8.8 62 17 28.6 15.0
30 62 16 22.4 12.0 72 19 36.9 20.0
35 72 17 31.9 17.6 80 21 44.6 27.1
40 80 18 41.8 24 90 23 56.1 32.5
45 85 19 44.0 25.5 100 25 72.1 45.4
50 90 20 45.7 27.5 110 27 88.0 52.0
55 100 21 56.1 34.0 120 29 102 67.2
60 110 22 64.4 43.1 130 31 123 76.5
65 120 23 76.5 51.2 140 33 138 85.0
70 125 24 79.2 51.2 150 35 151 102
75 130 25 93.1 63.2 160 37 183 125
80 140 26 106 69.4 170 39 190 125
85 150 28 119 78.3 180 41 212 149
90 160 30 142 100 190 43 242 160
95 170 32 165 112 200 45 264 189
100 180 34 183 125 215 48 303 220
110 200 38 229 167 240 50 391 304
120 215 40 260 183 260 55 457 340
130 230 40 270 193 280 58 539 408
140 250 42 319 240 300 62 682 454
150 270 45 446 260 320 65 781 502

 

Table 11–1
Equivalent Radial Load
Factors for Ball Bearings
F_{a} / C_{0} e F_{a} /\left( VF _{r}\right) \leq e F_{a} /\left( VF _{r}\right)>e
X_{1} Y _{ 1 } X_{2} Y _{ 2 }
0.014* 0.13 1.00 0 0.56 2.30
0.021 0.21 1.00 0 0.56 2.15
0.028 0.22 1.00 0 0.56 1.99
0.042 0.24 1.00 0 0.56 1.85
0.056 0.26 1.00 0 0.56 1.71
0.070 0.27 1.00 0 0.56 1.63
0.084 0.28 1.00 0 0.56 1.55
0.110 0.30 1.00 0 0.56 1.45
0.17 0.34 1.00 0 0.56 1.31
0.28 0.38 1.00 0 0.56 1.15
0.42 0.42 1.00 0 0.56 1.04
0.56 0.44 1.00 0 0.56 1.00
*Use 0.014 if F_{a} / C_{0}<0.014.

 

Related Answered Questions