Estimate the remaining life in revolutions of an 02-30 mm angular-contact ball bearing already subjected to 200 000 revolutions with a radial load of 18 kN, if it is now to be subjected to a change in load to 30 kN.
Estimate the remaining life in revolutions of an 02-30 mm angular-contact ball bearing already subjected to 200 000 revolutions with a radial load of 18 kN, if it is now to be subjected to a change in load to 30 kN.
Express Eq. (11-1) as
F_{1}^{a} L_{1}=C_{10}^{a} L_{10}=KFor a ball bearing, a = 3 and for an 02-30 mm angular contact bearing, C_{10}=20.3 kN .
K=(20.3)^{3}\left(10^{6}\right)=8.365\left(10^{9}\right)At a load of 18 kN, life L_{1} is given by:
L_{1}=\frac{K}{F_{1}^{a}}=\frac{8.365\left(10^{9}\right)}{18^{3}}=1.434\left(10^{6}\right) revFor a load of 30 kN, life L_{2} is:
L_{2}=\frac{8.365\left(10^{9}\right)}{30^{3}}=0.310\left(10^{6}\right) revIn this case, Eq. (6-57) – the Palmgren-Miner cycle-ratio summation rule – can be expressed as
\frac{l_{1}}{L_{1}}+\frac{l_{2}}{L_{2}}=1Substituting,
\begin{aligned}&\frac{200000}{1.434\left(10^{6}\right)}+\frac{l_{2}}{0.310\left(10^{6}\right)}=1 \\&l_{2}=0.267\left(10^{6}\right) rev \end{aligned}______________________________________________________________________________________________________________________
Eq. (11-1) : F L^{1 / a}=\text { constant }
Eq. (6-57): \sum \frac{n_{i}}{N_{i}}=c