The thrust load on shaft CD is from the axial component of the force transmitted through the bevel gear, and is directed toward bearing C. By observation of Fig. 11-14, direct mounted bearings would allow bearing C to carry the thrust load.

From the solution to Prob. 3-74, the axial thrust load is F_{a e}=362.8 lbf, and the bearing radial forces are F_{C x}=287.2 lbf , F_{C z}=500.9 lbf , F_{D x}=194.4 lbf \text {, and } F_{D z}=307.1 lbf \text {. }
Thus, the radial forces are
\begin{aligned}&F_{r C}=\sqrt{287.2^{2}+500.9^{2}}=577 lbf \\&F_{r D}=\sqrt{194.4^{2}+307.1^{2}}=363 lbf\end{aligned}
The induced loads are
Eq. (11-15): F_{i C}=\frac{0.47 F_{r C}}{K_{C}}=\frac{0.47(577)}{1.5}=181 lbf
Eq. (11-15): F_{i D}=\frac{0.47 F_{r D}}{K_{D}}=\frac{0.47(363)}{1.5}=114 lbf
Check the condition on whether to apply Eq. (11-16) or Eq. (11-17), where bearings C and D are substituted, respectively, for labels A and B in the equations.
F_{i C} \leq ? \geq F_{i D}+F_{a e}
181 lbf <114+362.8=476.8 lbf , so Eq.(11-16) applies
Eq. (11-16a):
\begin{aligned}F_{e C} &=0.4 F_{r C}+K_{C}\left(F_{i D}+F_{a e}\right) \\&=0.4(577)+1.5(114+362.8)=946 lbf >F_{r C,} \text { so use } F_{e C}\end{aligned}
Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable.
\begin{aligned}&x_{D}=\frac{L_{D}}{L_{R}}=\frac{10^{8}}{90\left(10^{6}\right)}=1.11 \\&R=\sqrt{0.90}=0.949\end{aligned}
Eq. (11-7): F_{R C}=1(946)\left(\frac{1.11}{4.48(1-0.949)^{1 / 1.5}}\right)^{3 / 10}=1130 lbf
Eq. (11-16b): F_{e D}=F_{r D}=363 lbf
Eq. (11-7): F_{R D}=1(363)\left(\frac{1.11}{4.48(1-0.949)^{1 / 1.5}}\right)^{3 / 10}=433 lbf
____________________________________________________________________________________________________________________
Eq. (11-15): F_{i}=\frac{0.47 F_{r}}{K}
Eq. (11-16): \text { If } \quad F_{i A} \leq\left(F_{i B}+F_{a e}\right) \quad\left\{\begin{array}{l}F_{e A}=0.4 F_{r A}+K_{A}\left(F_{i B}+F_{a e}\right) \\F_{e B}=F_{r B}\end{array}\right.
Eq. (11-17): \text { If } \quad F_{i A}>\left(F_{i B}+F_{a e}\right) \quad\left\{\begin{array}{l}F_{e B}=0.4 F_{r B}+K_{B}\left(F_{i A}-F_{a e}\right) \\F_{e A}=F_{r A}\end{array}\right.