Question 11.42: For the shaft application defined in Prob. 3–76, p. 139, per...

For the shaft application defined in Prob. 3–76, p. 139, perform a preliminary specification for tapered roller bearings at A and B. A bearing life of 500 million revolutions is desired with a 90 percent combined reliability for the bearing set. Should the bearings be oriented with direct mounting or indirect mounting for the axial thrust to be carried by the bearing at A? Assuming bearings are available with K = 1.5, find the required radial rating for each bearing. For this preliminary design, assume an application factor of one.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The thrust load on shaft AB is from the axial component of the force transmitted through the bevel gear, and is directed to the right. By observation of Fig. 11-14, indirect mounted bearings would allow bearing A to carry the thrust load.

 

From the solution to Prob. 3-76, the axial thrust load is F_{a e}=92.8  lbf , and the bearing radial forces are F_{A y}=639.4  lbf , F_{A z}=1513.7  lbf , F_{B y}=276.6  lbf \text {, and } F_{B z}=705.7  lbf \text {. }

Thus, the radial forces are

\begin{aligned}&F_{r A}=\sqrt{639.4^{2}+1513.7^{2}}=1643  lbf \\&F_{r B}=\sqrt{276.6^{2}+705.7^{2}}=758  lbf\end{aligned}

The induced loads are

Eq. (11-15):       F_{i A}=\frac{0.47 F_{r A}}{K_{A}}=\frac{0.47(1643)}{1.5}=515  lbf

Eq. (11-15):       F_{i B}=\frac{0.47 F_{r B}}{K_{B}}=\frac{0.47(758)}{1.5}=238  lbf

Check the condition on whether to apply Eq. (11-16) or Eq. (11-17).

F_{i A} \leq ? \geq F_{i B}+F_{a e}

515  lbf >238+92.8=330.8  lbf , so Eq.(11-17) applies

Notice that the induced load from bearing A is sufficiently large to cause a net axial force to the left, which must be supported by bearing B.

Eq. (11-17a):

\begin{aligned}F_{e B} &=0.4 F_{r B}+K_{B}\left(F_{i A}-F_{a e}\right) \\&=0.4(758)+1.5(515-92.8)=937 lbf >F_{r B}, \text { so use } F_{e B}\end{aligned}

Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable.

\begin{aligned}&x_{D}=\frac{L_{D}}{L_{R}}=\frac{500\left(10^{6}\right)}{90\left(10^{6}\right)}=5.56 \\&R=\sqrt{0.90}=0.949\end{aligned}

Eq. (11-7):               F_{R B}=1(937)\left(\frac{5.56}{4.48(1-0.949)^{1 / 1.5}}\right)^{3 / 10}=1810  lbf

Eq. (11-16b):           F_{e A}=F_{r A}=1643  lbf

Eq. (11-7):               F_{R A}=1(1643)\left(\frac{5.56}{4.48(1-0.949)^{1 / 1.5}}\right)^{3 / 10}=3180  lbf

_________________________________________________________________________________________________________________________

Eq. (11-7): C_{10} \doteq a_{f} F_{D}\left[\frac{x_{D}}{x_{0}+\left(\theta-x_{0}\right)\left(1-R_{D}\right)^{1 / b}}\right]^{1 / a} \quad R \geq 0.90

Eq. (11-15):  F_{i}=\frac{0.47 F_{r}}{K}

Eq. (11-16):  \text { If } \quad F_{i A} \leq\left(F_{i B}+F_{a e}\right) \quad\left\{\begin{array}{l}F_{e A}=0.4 F_{r A}+K_{A}\left(F_{i B}+F_{a e}\right) \\F_{e B}=F_{r B}\end{array}\right.

Eq. (11-17):   \text { If } \quad F_{i A}>\left(F_{i B}+F_{a e}\right) \quad\left\{\begin{array}{l}F_{e B}=0.4 F_{r B}+K_{B}\left(F_{i A}-F_{a e}\right) \\F_{e A}=F_{r A}\end{array}\right.

Related Answered Questions