The thrust load on shaft AB is from the axial component of the force transmitted through the bevel gear, and is directed to the right. By observation of Fig. 11-14, indirect mounted bearings would allow bearing A to carry the thrust load.

From the solution to Prob. 3-76, the axial thrust load is F_{a e}=92.8 lbf , and the bearing radial forces are F_{A y}=639.4 lbf , F_{A z}=1513.7 lbf , F_{B y}=276.6 lbf \text {, and } F_{B z}=705.7 lbf \text {. }
Thus, the radial forces are
\begin{aligned}&F_{r A}=\sqrt{639.4^{2}+1513.7^{2}}=1643 lbf \\&F_{r B}=\sqrt{276.6^{2}+705.7^{2}}=758 lbf\end{aligned}
The induced loads are
Eq. (11-15): F_{i A}=\frac{0.47 F_{r A}}{K_{A}}=\frac{0.47(1643)}{1.5}=515 lbf
Eq. (11-15): F_{i B}=\frac{0.47 F_{r B}}{K_{B}}=\frac{0.47(758)}{1.5}=238 lbf
Check the condition on whether to apply Eq. (11-16) or Eq. (11-17).
F_{i A} \leq ? \geq F_{i B}+F_{a e}
515 lbf >238+92.8=330.8 lbf , so Eq.(11-17) applies
Notice that the induced load from bearing A is sufficiently large to cause a net axial force to the left, which must be supported by bearing B.
Eq. (11-17a):
\begin{aligned}F_{e B} &=0.4 F_{r B}+K_{B}\left(F_{i A}-F_{a e}\right) \\&=0.4(758)+1.5(515-92.8)=937 lbf >F_{r B}, \text { so use } F_{e B}\end{aligned}
Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable.
\begin{aligned}&x_{D}=\frac{L_{D}}{L_{R}}=\frac{500\left(10^{6}\right)}{90\left(10^{6}\right)}=5.56 \\&R=\sqrt{0.90}=0.949\end{aligned}
Eq. (11-7): F_{R B}=1(937)\left(\frac{5.56}{4.48(1-0.949)^{1 / 1.5}}\right)^{3 / 10}=1810 lbf
Eq. (11-16b): F_{e A}=F_{r A}=1643 lbf
Eq. (11-7): F_{R A}=1(1643)\left(\frac{5.56}{4.48(1-0.949)^{1 / 1.5}}\right)^{3 / 10}=3180 lbf
_________________________________________________________________________________________________________________________
Eq. (11-7): C_{10} \doteq a_{f} F_{D}\left[\frac{x_{D}}{x_{0}+\left(\theta-x_{0}\right)\left(1-R_{D}\right)^{1 / b}}\right]^{1 / a} \quad R \geq 0.90
Eq. (11-15): F_{i}=\frac{0.47 F_{r}}{K}
Eq. (11-16): \text { If } \quad F_{i A} \leq\left(F_{i B}+F_{a e}\right) \quad\left\{\begin{array}{l}F_{e A}=0.4 F_{r A}+K_{A}\left(F_{i B}+F_{a e}\right) \\F_{e B}=F_{r B}\end{array}\right.
Eq. (11-17): \text { If } \quad F_{i A}>\left(F_{i B}+F_{a e}\right) \quad\left\{\begin{array}{l}F_{e B}=0.4 F_{r B}+K_{B}\left(F_{i A}-F_{a e}\right) \\F_{e A}=F_{r A}\end{array}\right.