Given P = 25 kN e = 500 mm.
S_{y t}=200 N / mm ^{2} \quad(f s)=4 \quad d_{i}=0.8 d_{o} .
Step I Calculation of permissible tensile stress
\sigma_{t}=\frac{S_{y t}}{(f s)}=\frac{200}{4}=50 N / mm ^{2} .
Step II Calculation of direct compressive and bending stresses
d_{i}=0.8 d_{0} .
The direct compressive stress is given by,
\frac{P}{A}=\frac{25 \times 10^{3}}{\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)} .
=\frac{25 \times 10^{3}}{\frac{\pi}{4}\left[d_{0}^{2}-\left(0.8 d_{0}\right)^{2}\right]}=\left(\frac{88419.41}{d_{0}^{2}}\right) N / mm ^{2} (i).
The bending stresses are tensile on the left side and compressive on the right side of the cross-section.
The tensile stress due to bending moment is given by,
\frac{P e y}{I}=\frac{25 \times 10^{3}(500)\left(0.5 d_{0}\right)}{\frac{\pi}{64}\left[d_{0}^{4}-\left(0.8 d_{0}\right)^{4}\right]} .
=\left(\frac{215657104.5}{d_{0}^{3}}\right) N / mm ^{2} (ii).
Step III Calculation of outer and inner diameters
The resultant tensile stress is obtained by subtracting (i) from (ii). Equating the resultant stress to permissible tensile stress,
\left(\frac{215657104 \cdot 5}{d_{0}^{3}}\right)-\left(\frac{88419.41}{d_{0}^{2}}\right)=50 .
or \left(d_{0}^{3}+1768.39 d_{0}\right)=4313142 \cdot 09 .
The above expression indicates cubic equation and it is solved by trial and error method. The trial values of d_o and corresponding values of left hand side are tabulated as follows:
\left(d_{0}^{3}+1768.39 d_{0}\right) |
d_o |
3 640 258.5 |
150 |
4 378 942.4 |
160 |
4 223 717.6 |
158 |
4 300 853.0 |
159 |
4 378 942.4 |
160 |
From the above table, it is observed that the value of d_o is between 159 and 160 mm
\therefore \quad d_{0}=160 mm .
d_{i}=0.8 d_{o}=0.8(160)=128 mm .