\text { Given } P=0 \text { to } P_{\max } S_{u t}=1250 MPa .
S_{e}^{\prime}=600 MPa \quad K_{t}=1.8 \quad q=0.95 \quad R=90 \%.
N=10^{5} \text { cycles } .
Step I Endurance limit stress for bar
S_{e}^{\prime}=600 MPa =600 N / mm ^{2} .
\text { From Fig. } 5.24 \text { (polished surface), } K_{a}=1 .
\text { For } 30 mm \text { diameter wire, } K_{b}=0.85 .
\text { For } 90 \% \text { reliability, } K_{c}=0.897 .
From Eq. (5.12),
K_{f}=1+q\left(K_{t}-1\right) (5.12).
K_{f}=1+q\left(K_{t}-1\right)=1+0.95(1.8-1)=1.76 .
K_{d}=\frac{1}{K_{f}}=\frac{1}{1.76}=0.568 .
S_{e}=K_{a} K_{b} K_{c} K_{d} S_{e}^{\prime} .
= 1.0(0.85)(0.897)(0.568)(600) = 259.84 N/mm².
Step II Construction of S–N diagram
0.9 S_{u t}=0.9(1250)=1125 N / mm ^{2} .
\log _{10}\left(0.9 S_{u t}\right)=\log _{10}(1125)=3.0512 .
\log _{10}\left(S_{e}\right)=\log _{10}(259.84)=2.4147 .
\log _{10}\left(10^{5}\right)=5 .
The S–N curve for this problem is shown in Fig. 5.49.
Step III Fatigue strength at 10^5 cycles
From Fig. 5.49,
\overline{A E}=\frac{\overline{A D} \times \overline{E F}}{\overline{D B}}=\frac{(3.0512-2.4147)(5-3)}{(6-3)} .
=0.4243 .
\log _{10} S_{f}=3.0512-\overline{A E}=2.6269 .
S_{f}=423.55 N / mm ^{2} .
Therefore, at 10^5 cycles the fatigue strength is 423.55 N/mm².
Step IV Construction of modified Goodman diagram
Supose,
P_{\max .}=P \quad \text { and } \quad P_{\min .}=0 .
P_{m}=\frac{1}{2}\left[P_{\max }+P_{\min }\right]=\frac{1}{2} P .
P_{a}=\frac{1}{2}\left[P_{\max .}-P_{\min }\right]=\frac{1}{2} P .
\tan \theta=\frac{\sigma_{a}}{\sigma_{m}}=\frac{P_{a}}{P_{m}}=1 .
\theta=45^{\circ} .
The modified Goodman diagram for this example is shown in Fig. 5.50.
Step V Permissible stress amplitude
Refer to Fig. 5.50. The coordinates of point X are determined by solving the following two equations simultaneously.
(i) Equation of line AB
\frac{S_{a}}{423.55}+\frac{S_{m}}{1250}=1 (a).
(ii) Equation of line OX
\frac{S_{a}}{S_{m}}=\tan \theta=1 (b).
Solving the two equations,
S_{a}=S_{m}=316.36 N / mm ^{2} .
Step VI Maximum force on bar
\text { Since } \quad S_{a}=\left(\frac{P_{a}}{\text { area }}\right)=\left(\frac{P / 2}{\text { area }}\right) .
The minimum cross-section of the bar is shown in Fig. 5.51.
S_{a}=\frac{P / 2}{\text { area }} \text { or } 316.36=\frac{P / 2}{\frac{\pi}{4}(30-4)^{2}} .
P = 335 929.5 N or 336 kN.