A 69-m^{3} helium tank is compressed under a pressure of 800 kN/m^{2} abs and at a temperature of 10^{\circ } C.(a) Determine the density of the helium in the tank. (b)Determine the weight of the helium in the tank.
A 69-m^{3} helium tank is compressed under a pressure of 800 kN/m^{2} abs and at a temperature of 10^{\circ } C.(a) Determine the density of the helium in the tank. (b)Determine the weight of the helium in the tank.
(a) To determine the density of the helium in the tank, one may apply either Equation
1.104 p=\rho RT or Equation 1.117 pV=NR_{u} T. Equation 1.117 pV=NR_{u} T is applied in this Example Problem as follows:
which is solved for N, the number of moles of helium, as follows:
N:=kg\frac{m}{sec^{2} } p:=800\frac{kN}{m^{2} } V:=69m^{3}
T:=10^{\circ } C=283.15K R_{u}:=8314\frac{Nm}{kgmolK}
Guess value: N_{m} :=1kgmol
Given
p V=N_{m}R_{u}T
N_{m}:=Finf(N_{m})=23.448kgmol
Note that the number of moles, N is called N_{m} in Mathcad in order to distinguish between it and the force units of Newton, N. Then, the density, ρ of the helium is 78 Fluid Mechanics for Civil and Environmental Engineers computed by applying Equation 1.33 \rho =\frac{M}{V} , as follows:
\rho =\frac{M}{V}where the mass, M of the helium is computed by applying Equation 1.107 m=\frac{M}{N} as follows:
m=\frac{M}{N}where the molar mass, m for helium is read from Table A.5 in Appendix A as follows:
mm:=4.003 \frac{kg}{kgmol} M:=mm N_{m}=93.864 kg
\rho :=\frac{M}{V} =1.36\frac{kg}{m^{3} }
Note that the molar mass, m is called mm in Mathcad in order to distinguish between it and the mass units of meters, m.
(b) To determine the weight of the helium in the tank, Equation 1.44 \gamma =\frac{W}{V}=\frac{Mg}{V}=\rho g is applied as follows:
\gamma =\frac{W}{V} =\frac{Mg}{V} \rho g
g:=9.81\frac{m}{sec^{2} } \gamma :=\rho g=13.345\frac{N}{m^{3} } W:=\gamma V=920.804N
Table A.5 | ||||||||
Physical Properties for Some Common Gases at Standard Sea-Level Atmospheric Pressure at Room Temperature (68^{\circ } or 20^{\circ }C ) | ||||||||
Gas at 68^{\circ } |
Chemical Formula |
Molar Mass (m) slug=slug- mol |
Density (ρ) slug/ft^{3} |
Absolute (Dynamic) Viscosity (μ) 10^{-6} Ib-sec/ft^{2} |
Gas Constant (R) ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R ) |
Specific Heat | Specific Heat Ratio, K=C_{\rho }/C_{\upsilon } |
|
C_{\rho } | C_{\upsilon } | |||||||
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R ) | ||||||||
Air | 28.960 | 0.002310 | 0.376 | 1715 | 6000 | 4285 | 1.40 | |
Carbon dioxide | CO_{2} | 44.010 | 0.003540 | 0.310 | 1123 | 5132 | 4009 | 1.28 |
Carbon monoxide | CO | 28.010 | 0.002260 | 0.380 | 1778 | 6218 | 4440 | 1.40 |
Helium | He | 4.003 | 0.000323 | 0.411 | 12.420 | 31.230 | 31.230 | 1.66 |
Hydrogen | H_{2} | 2.016 | 0.000162 | 0.189 | 24.680 | 86.390 | 86.390 | 1.40 |
Methane | CH_{2} | 16.040 | 0.001290 | 0.280 | 3100 | 13.400 | 13.400 | 1.30 |
Nitrogen | N_{2} | 28.020 | 0.002260 | 0.368 | 1773 | 6210 | 4437 | 1.40 |
Oxygen | O_{2} | 32.000 | 0.002580 | 0.418 | 1554 | 5437 | 3883 | 1.40 |
Water vapor | H_{2}O | 18.020 | 0.001450 | 0.212 | 2760 | 11.110 | 8350 | 1.33 |
at 20^{\circ } C | kg/kg-mol | kg/m^{3} | 10^{-6} N-sec/m^{2} | N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K ) | N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K ) | |||
Air | 28.960 | 1.2050 | 18.0 | 287 | 1003 | 716 | 1.40 | |
Carbon dioxide | CO_{2} | 44.010 | 1.8400 | 14.8 | 188 | 858 | 670 | 1.28 |
Carbon monoxide | CO | 28.010 | 1.1600 | 18.2 | 297 | 1040 | 743 | 1.40 |
Helium | He | 4.003 | 0.1660 | 19.7 | 2077 | 5220 | 3143 | 1.66 |
Hydrogen | H_{2} | 2.016 | 0.0839 | 9.0 | 4120 | 14.450 | 10.330 | 1.40 |
Methane | CH_{2} | 16.040 | 0.6680 | 13.4 | 520 | 2250 | 1730 | 1.30 |
Nitrogen | N_{2} | 28.020 | 1.1600 | 17.6 | 297 | 1040 | 743 | 1.40 |
Oxygen | O_{2} | 32.000 | 1.3300 | 20.0 | 260 | 909 | 649 | 1.40 |
Water vapor | H_{2}O | 18.020 | 0.7470 | 10.1 | 462 | 1862 | 1400 | 1.33 |