Question 1.39: A 69-m^3 helium tank is compressed under a pressure of 800 k...

A 69-m^{3} helium tank is compressed under a pressure of 800 kN/m^{2} abs and at a temperature of 10^{\circ } C.(a) Determine the density of the helium in the tank. (b)Determine the weight of the helium in the tank.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) To determine the density of the helium in the tank, one may apply either Equation
1.104 p=\rho RT or Equation 1.117 pV=NR_{u} T. Equation 1.117 pV=NR_{u} T is applied in this Example Problem as follows:

pV=NR_{u} T

which is solved for N, the number of moles of helium, as follows:

N:=kg\frac{m}{sec^{2} }                   p:=800\frac{kN}{m^{2} }                  V:=69m^{3}

T:=10^{\circ } C=283.15K                     R_{u}:=8314\frac{Nm}{kgmolK}

Guess value:                    N_{m} :=1kgmol

Given

p V=N_{m}R_{u}T
N_{m}:=Finf(N_{m})=23.448kgmol

Note that the number of moles, N is called N_{m} in Mathcad in order to distinguish between it and the force units of Newton, N. Then, the density, ρ of the helium is 78 Fluid Mechanics for Civil and Environmental Engineers computed by applying Equation 1.33 \rho =\frac{M}{V} , as follows:

\rho =\frac{M}{V}

where the mass, M of the helium is computed by applying Equation 1.107 m=\frac{M}{N} as follows:

m=\frac{M}{N}

where the molar mass, m for helium is read from Table A.5 in Appendix A as follows:

mm:=4.003 \frac{kg}{kgmol}                   M:=mm       N_{m}=93.864 kg
\rho :=\frac{M}{V} =1.36\frac{kg}{m^{3} }

Note that the molar mass, m is called mm in Mathcad in order to distinguish between it and the mass units of meters, m.
(b) To determine the weight of the helium in the tank, Equation 1.44 \gamma =\frac{W}{V}=\frac{Mg}{V}=\rho g is applied as follows:

\gamma =\frac{W}{V} =\frac{Mg}{V} \rho g
g:=9.81\frac{m}{sec^{2} }                  \gamma :=\rho g=13.345\frac{N}{m^{3} }                   W:=\gamma           V=920.804N

Table A.5
Physical Properties for Some Common Gases at Standard Sea-Level Atmospheric Pressure at Room Temperature (68^{\circ } or 20^{\circ }C )
Gas
at 68^{\circ }
Chemical
Formula
Molar Mass
(m)
slug=slug-
mol
Density
(ρ)
slug/ft^{3}
Absolute (Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{2}
Gas
Constant
(R)
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Specific Heat Specific Heat
Ratio,
K=C_{\rho }/C_{\upsilon }
C_{\rho } C_{\upsilon }
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Air 28.960 0.002310 0.376 1715 6000 4285 1.40
Carbon dioxide CO_{2} 44.010 0.003540 0.310 1123 5132 4009 1.28
Carbon monoxide CO 28.010 0.002260 0.380 1778 6218 4440 1.40
Helium He 4.003 0.000323 0.411 12.420 31.230 31.230 1.66
Hydrogen H_{2} 2.016 0.000162 0.189 24.680 86.390 86.390 1.40
Methane CH_{2} 16.040 0.001290 0.280 3100 13.400 13.400 1.30
Nitrogen N_{2} 28.020 0.002260 0.368 1773 6210 4437 1.40
Oxygen O_{2} 32.000 0.002580 0.418 1554 5437 3883 1.40
Water vapor H_{2}O 18.020 0.001450 0.212 2760 11.110 8350 1.33
at 20^{\circ } C kg/kg-mol kg/m^{3} 10^{-6} N-sec/m^{2} N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K ) N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K )
Air 28.960 1.2050 18.0 287 1003 716 1.40
Carbon dioxide CO_{2} 44.010 1.8400 14.8 188 858 670 1.28
Carbon monoxide CO 28.010 1.1600 18.2 297 1040 743 1.40
Helium He 4.003 0.1660 19.7 2077 5220 3143 1.66
Hydrogen H_{2} 2.016 0.0839 9.0 4120 14.450 10.330 1.40
Methane CH_{2} 16.040 0.6680 13.4 520 2250 1730 1.30
Nitrogen N_{2} 28.020 1.1600 17.6 297 1040 743 1.40
Oxygen O_{2} 32.000 1.3300 20.0 260 909 649 1.40
Water vapor H_{2}O 18.020 0.7470 10.1 462 1862 1400 1.33

Related Answered Questions