\text { Given For vessel, } D_{i}=1 m \quad P_{i}=1.5 MPa .
\sigma_{t}=80 N / mm ^{2} \quad \tau=60 N / mm ^{2} \quad \sigma_{c}=120 N / mm ^{2} .
\text { For longitudinal joint, } \eta=80 \% .
\text { For circumferential joint, } \eta_{1}=62 \% .
Step I Thickness of plate
From Eq. (8.43),
t=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta}+ CA (8.43).
t=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta}+ CA =\frac{1.5(1000)}{2(80)(0.8)}+2 .
= 13.72 or 14 mm (i)
Step II Diameter of rivets
t > 8 mm
From Eq. (8.45),
d=6 \sqrt{t} (8.45).
d=6 \sqrt{t}=6 \sqrt{14}=22.45 \quad \text { or } \quad 23 mm.
Step III Number of rivets
From Eq. (8.58),
n=\left(\frac{D_{i}}{d}\right)^{2} \frac{P_{i}}{\tau} (8.58).
n=\left(\frac{D_{i}}{d}\right)^{2} \frac{P_{i}}{\tau}=\left(\frac{1000}{23}\right)^{2} \frac{(1.5)}{(60)}=47.26 \text { or } 48 .
Step IV Pitch of rivets
From Eq. (8.59),
\eta_{1}=\frac{p_{1}-d}{p_{1}} (8.59).
\eta_{1}=\frac{p_{1}-d}{p_{1}} \quad \text { or } \quad 0.62=\frac{p_{1}-23}{p_{1}} .
\therefore \quad p_{1}=60.53 \text { or } 62 mm (a).
From Eqs (8.48) and (8.49),
p_{\min .}=2 d (8.48).
p_{\max }=C t+41.28 (8.49).
p_{\min .}=2 d=2(23)=46 mm (b).
p_{\max .}=C t+41.28=1.31(14)+41.28 .
= 59.62 mm (c)
From (a) and (c),
p_{1}>p_{\max } .
The pitch of rivets should be from 46 mm to 59.62 mm. We will assume the pitch as 55 mm and recalculate the number of rivets and diameter of rivet.
p_{1}=55 mm (iv)
From Eq. (8.60), the number of rivets in one row is given by,
n_{1}=\frac{\pi\left(D_{i}+t\right)}{p_{1}} (8.60).
n_{1}=\frac{\pi\left(D_{i}+t\right)}{p_{1}}=\frac{\pi(1000+14)}{55}=57.92 \text { or } 58 (iii).
Step V Number of rows of rivets
It is assumed that the type of joint is single-riveted lap joint. The number of rows of rivets is one.
From Eq. (8.58), revised value of rivet diameter is obtained.
n=\left(\frac{D_{i}}{d}\right)^{2} \frac{P_{i}}{\tau} (8.58).
n=\left(\frac{D_{i}}{d}\right)^{2} \frac{P_{i}}{\tau} \quad \text { or } \quad 58=\left(\frac{1000}{d}\right)^{2} \frac{(1.5)}{(60)} .
d = 20.76 or 21 mm (ii)
Step VI Overlap of plates
The margin m is given by,
m = 1.5d = 1.5 (21) = 31.5 or 35 mm
From Eq. (8.62),
a=p_{t}+2 m (8.62).
a=p_{t}+2 m=0+2(35)=70 mm (vi).
Step VII Check for design
From Eq. (8.59),
\eta_{1}=\frac{p_{1}-d}{p_{1}} (8.59).
\eta_{1}=\frac{p_{1}-d}{p_{1}}=\frac{55-21}{55}=0.6182 \text { or } 61.82 \% .
The efficiency of the joint is very near to 62% and no changes are required in the calculations.