The minimum radial clearance, c_{min} , is
c_{min}= \frac{2.002 − 2.000}{2} =0.001 \ in \\ P=\frac{W}{ld} =\frac{100}{2\left(2\right) } =25 \ psi \\ S =\left(\frac{r}{c}\right)^2 \frac{\mu N}{P}= \left(\frac{1}{0.001}\right)^2 \frac{\mu^{\backprime} \left(15\right)}{10^6 \left(25\right)}= 0.6 \mu^{\backprime}
where \mu^{\backprime} is viscosity in \mu reyn . The friction horsepower loss,\left(hp\right)_f,is found as follows:
\left(hp\right)_f =\frac{f WrN}{1050} = \frac{WNc}{1050}\frac{fr}{c}=\frac{100 \left({900}/{60} \right)0.001}{1050} \frac{fr}{c}= 0.001 429 \frac{fr}{c} hp
The heat generation rate H_{gen}, in Btu/h, is
H_{gen}= 2545\left(hp\right)_f = 2545\left(0.001 429\right){fr}/{c} = 3.637 {fr}/{c} Btu/h
From Eq. (12–19a)
H_{loss}=\frac{\hbar_{CR} A}{1+\alpha} \left(\bar{T}_f – T_{\infty }\right)
with \hbar_{CR} = 2.7 \ {Btu}/{\left(h · ft^2 · ^\circ F\right)}, the rate of heat loss to the environment H_{loss} is
H_{loss}= \frac{\hbar_{CR} A}{\alpha + 1} \left(\bar{T}_f − 70\right) = \frac{2.7\left({40}/{144}\right)}{\left(1 + 1\right)}\left(\bar{T}_f -70\right) = 0.375\left(\bar{T}_f -70\right) Btu/h
Build a table as follows for trial values of \bar{T}_f \ of \ 190 \ and \ 195^\circ F:
Trial \bar{T}_f |
\mu |
S |
{fr}/{c} |
H_{gen} |
H_{loss} |
190 |
1.15 |
0.69 |
13.6 |
49.5 |
45.0 |
195 |
1.03 |
0.62 |
12.2 |
44.4 |
46.9 |
The temperature at which H_{gen}=H_{loss} = 46.3 \ Btu/h \ is \ 193.4^\circ F. Rounding \bar{T}_f \ to \ 193^\circ F we find \mu = 1.08 \ \mu reyn \ and \ S = 0.6\left(1.08\right) = 0.65 . From Fig. 12–24,9.70 \Delta \ {TF}/{P} \ = 4.25^\circ F/psi and thus
\Delta T_F = {4.25 P}/{9.70} = {4.25 \left(25\right)}/{9.70} = 11.0^\circ \ F \\ T_1 = T_s = \bar{T}_f − {\Delta T}/{2} = 193 − {11}/{2} = 187.5^\circ \ F \\ T_{max} = T_1 +\Delta T_F = 187.5 + 11 = 198.5^\circ \ F
From Eq. (12–19b)
T_b = \frac{\bar{T}_f + \alpha T_{\infty}}{1 + \alpha}
T_b = \frac{T_f + \alpha T_{\infty }}{1 + \alpha}= \frac{193 + \left(1\right)70}{1 + 1}= 131.5^\circ \ F
with S = 0.65 , the minimum film thickness from Fig. 12–16 is
h_0 =\frac{h_0}{c}c = 0.79 \left(0.001\right) = 0.000 79 in
The coefficient of friction from Fig. 12–18 is
f = \frac{f r}{c}\frac{c}{r}= 12.8 \frac{0.001}{1}= 0.012 8
The parasitic friction torque T is
T = f Wr = 0.012 8 \left(100\right) \left(1\right) = 1.28 \ lbf · in