\text { Given } \delta_{\max .}=0.003 L \quad E=207000 N / mm ^{2} .
Step I Permissible deflection
\delta_{\max .}=0.003 L=0.003(800)=2.4 mm (i).
Step II Deflection at centre of span
The deflection is maximum at the centre of the span length. An imaginary force Q is assumed at the centre as shown in Fig. 9.48 (b). By symmetry, the reactions are given by
R_{A}=R_{E}=\left(3000+\frac{Q}{2}\right) .
The bending moments in the regions AB and BC are given by,
\left(M_{b}\right)_{A B}=\left(3000+\frac{Q}{2}\right) x=3000 x+\frac{Q x}{2} .
\left(M_{b}\right)_{B C}=\left(3000+\frac{Q}{2}\right) x-\frac{10}{2}(x-100)(x-100) .
=\frac{Q x}{2}-5 x^{2}+4000 x-50000 .
Differentiating partially with respect to Q,
\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{A B}\right]=\frac{x}{2} (a).
\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{B C}\right]=\frac{x}{2} (b).
The total strain energy stored in the shaft is given by,
U=2 U_{A B}+2 U_{B C} .
From Eq. (9.56),
U=\int \frac{\left(M_{b}\right)^{2} d x}{2 E I} (9.56).
U=2 \int_{0}^{100} \frac{\left[\left(M_{b}\right)_{A B}\right]^{2} d x}{2 E I_{1}}+2 \int_{100}^{400} \frac{\left[\left(M_{b}\right)_{B C}\right]^{2} d x}{2 E I_{2}} .
From Eq. (9.53),
\delta_{i}=\frac{\partial U}{\partial P_{i}} (9.53).
\delta_{\max .}=\frac{\partial U}{\partial Q} .
\delta_{\max .}=2 \int_{0}^{100}\left(\frac{2\left(M_{b}\right)_{A B}}{2 E I_{1}}\right)\left(\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{A B}\right]\right) d x
+2 \int_{100}^{400}\left(\frac{2\left(M_{b}\right)_{B C}}{2 E I_{2}}\right)\left(\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{B C}\right]\right) d x .
\text { Substituting values of }\left[\left(M_{b}\right)_{A B}\right],\left[\left(M_{b}\right)_{b c}\right] \text {, (a) and } (b) in the above expression,
\delta_{\max .}=\frac{2}{E I_{1}} \int_{0}^{100}\left(3000 x+\frac{Q x}{2}\right)\left(\frac{x}{2}\right) d x
+\frac{2}{E I_{2}} \int_{100}^{400}\left(\frac{Q x}{2}-5 x^{2}+4000 x-50000\right)\left(\frac{x}{2}\right) d x .
Substituting (Q = 0) and integrating,
\delta_{\max .}=\frac{10^{9}}{E I_{1}}+\frac{48.375\left(10^{9}\right)}{E I_{2}} (ii).
Step III Shaft diameter
Equating (i) and (ii) and substituting values,
2.4=\frac{10^{9}}{(207000)\left[\pi(0.8 d)^{4} / 64\right]}
+\frac{48.375\left(10^{9}\right)}{(207000)\left(\pi d^{4} / 64\right)} .
d = 37.99 mm.