Question 9.27: A transmission shaft with a uniformly distributed load of 10...

A transmission shaft with a uniformly distributed load of 10 N/mm is shown in Fig. 9.48(a). The maximum permissible deflection of the shaft is (0.003L), where L is the span length. The modulus of elasticity of the shaft material is 207 000 N/mm². Determine the shaft diameter by Castigliano’s theorem.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \delta_{\max .}=0.003 L \quad E=207000 N / mm ^{2} .

Step I Permissible deflection

\delta_{\max .}=0.003 L=0.003(800)=2.4 mm                   (i).

Step II Deflection at centre of span
The deflection is maximum at the centre of the span length. An imaginary force Q is assumed at the centre as shown in Fig. 9.48 (b). By symmetry, the reactions are given by

R_{A}=R_{E}=\left(3000+\frac{Q}{2}\right) .

The bending moments in the regions AB and BC are given by,

\left(M_{b}\right)_{A B}=\left(3000+\frac{Q}{2}\right) x=3000 x+\frac{Q x}{2} .

\left(M_{b}\right)_{B C}=\left(3000+\frac{Q}{2}\right) x-\frac{10}{2}(x-100)(x-100) .

=\frac{Q x}{2}-5 x^{2}+4000 x-50000 .

Differentiating partially with respect to Q,

\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{A B}\right]=\frac{x}{2}           (a).

\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{B C}\right]=\frac{x}{2}          (b).

The total strain energy stored in the shaft is given by,

U=2 U_{A B}+2 U_{B C} .

From Eq. (9.56),

U=\int \frac{\left(M_{b}\right)^{2} d x}{2 E I}                     (9.56).

U=2 \int_{0}^{100} \frac{\left[\left(M_{b}\right)_{A B}\right]^{2} d x}{2 E I_{1}}+2 \int_{100}^{400} \frac{\left[\left(M_{b}\right)_{B C}\right]^{2} d x}{2 E I_{2}} .

From Eq. (9.53),

\delta_{i}=\frac{\partial U}{\partial P_{i}}               (9.53).

\delta_{\max .}=\frac{\partial U}{\partial Q} .

\delta_{\max .}=2 \int_{0}^{100}\left(\frac{2\left(M_{b}\right)_{A B}}{2 E I_{1}}\right)\left(\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{A B}\right]\right) d x

+2 \int_{100}^{400}\left(\frac{2\left(M_{b}\right)_{B C}}{2 E I_{2}}\right)\left(\frac{\partial}{\partial Q}\left[\left(M_{b}\right)_{B C}\right]\right) d x .

\text { Substituting values of }\left[\left(M_{b}\right)_{A B}\right],\left[\left(M_{b}\right)_{b c}\right] \text {, (a) and } (b) in the above expression,

\delta_{\max .}=\frac{2}{E I_{1}} \int_{0}^{100}\left(3000 x+\frac{Q x}{2}\right)\left(\frac{x}{2}\right) d x

+\frac{2}{E I_{2}} \int_{100}^{400}\left(\frac{Q x}{2}-5 x^{2}+4000 x-50000\right)\left(\frac{x}{2}\right) d x .

Substituting (Q = 0) and integrating,

\delta_{\max .}=\frac{10^{9}}{E I_{1}}+\frac{48.375\left(10^{9}\right)}{E I_{2}}                 (ii).

Step III Shaft diameter
Equating (i) and (ii) and substituting values,

2.4=\frac{10^{9}}{(207000)\left[\pi(0.8 d)^{4} / 64\right]}

+\frac{48.375\left(10^{9}\right)}{(207000)\left(\pi d^{4} / 64\right)} .

d = 37.99 mm.

Related Answered Questions