Question 5.8: A round cold-drawn 1018 steel rod has an 0.2 percent yield s...

A round cold-drawn 1018 steel rod has an 0.2 percent yield strength S_{y} = N(78.4, 5.90) kpsi and is to be subjected to a static axial load of P = N(50, 4.1) kip. What value of the design factor \overline {n} corresponds to a reliability of 0.999 against yielding (z = −3.09)? Determine the corresponding diameter of the rod.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C_{S} = 5.90/78.4 = 0.0753, and

σ =\frac {P}{A} =\frac {4P}{πd^{2}}

Since the COV of the diameter is an order of magnitude less than the COV of the load or strength, the diameter is treated deterministically:

C_{σ} = C_{P} =\frac {4.1}{50} = 0.082

From Eq. (5–42),

\overline {n} =\frac {1 + \sqrt {1 − \left (1 − z^{2}C^{2}_{S}\right )  \left ( 1 − z^{2}C^{2}_{σ})\right)}}{1 − z^{2}C^{2}_{S}}               (5–42)

\overline {n} =\frac {1 ± \sqrt {1 − \left [1 − (3.09)^{2}(0.0753^{2} )\right ]  \left [ 1 − (3.09)^{2}(0.082^{2})\right]}}{1 − (3.09)^{2}(0.0753^{2})}

The diameter is found deterministically:

d= \sqrt{\frac {4\overline {P}}{π \overline{Sy}/ \overline {n}}}=\sqrt {\frac {4(50 000)}{π(78 400)/1.416}}=1.072  in

\overline{Sy}= N(78.4, 5.90) kpsi, P = N(50, 4.1) kip, and d = 1.072 in. Then

A =\frac {πd^{2}}{4} =\frac {π(1.072^{2})}{4} = 0.9026  in^{2}

\overline {σ} =\frac {\overline{P}}{A} =\frac {(50 000)}{0.9026} = 55 400  psi

C_{P} = C_{σ} =\frac {4.1}{50} = 0.082

\hat {σ}_{σ} = C_{σ} \overline {σ} = 0.082(55 400) = 4540  psi

\hat {σ}_{S} = 5.90  kpsi

From Eq. (5–40)

z =\frac {m − μ_{m}}{\hat {σ}_{m}} =\frac {0 − μ_{m}}{\hat {σ}_{m}} = − \frac {μ_{m}}{\hat {σ}_{m}} =− \frac {μ_{S} − μ_{σ}}{(\hat {σ}^{2}_{S} + \hat {σ}^{2}_{σ})^{1/2}}               (5–40)

z = −\frac {78.4 − 55.4}{(5.90^2 + 4.54^2)^{1/2}}= −3.09

From Appendix Table A–10, R = (−3.09) = 0.999.


Table A–10
Cumulative Distribution Function of Normal (Gaussian) Distribution

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Z_{α}
0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 0.0
0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 0.1
0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 0.2
0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 0.3
0.3121 0.3156 0.3192 0.3238 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 0.4
0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 0.5
0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 0.6
0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 0.7
0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 0.8
0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 0.9
0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 1.0
0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 1.01
0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 1.02
0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 1.03
0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 1.04
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 1.05
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 1.06
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 1.07
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 1.08
0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 1.09
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 2.0
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 2.01
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 2.02
0.00842 0.00866 0.00889 0.00914 0.00939 0.00964 0.00990 0.0102 0.0104 0.0107 2.03
0.00639 0.00657 0.00676 0.00695 0.00714 0.00734 0.00755 0.00776 0.00798 0.00820 2.04
0.00480 0.00494 0.00508 0.00523 0.00539 0.00554 0.00570 0.00587 0.00604 0.00621 2.05
0.00357 0.00368 0.00379 0.00391 0.00402 0.00415 0.00427 0.00440 0.00453 0.00466 2.06
0.00264 0.00272 0.00280 0.00289 0.00298 0.00307 0.00317 0.00326 0.00336 0.00347 2.07
0.00193 0.00199 0.00205 0.00212 0.00219 0.00226 0.00233 0.00240 0.00248 0.00256 2.08
0.00139 0.00144 0.00149 0.00154 0.00159 0.00164 0.00169 0.00175 0.00181 0.00187 2.09

 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Z_{α}
0.0^4481 0.0^4723 0.0^3108 0.0^3159 0.0^3233 0.0^3337 0.0^3483 0.0^3687 0.0^3968 0.00135 3
0.0^6479 0.0^6793 0.0^5130 0.0^5211 0.0^5340 0.0^5541 0.0^5854 0.0^4133 0.0^4207 0.04317 4
0.0^8182 0.0^8332 0.0^8599 0.0^7107 0.0^7190 0.0^7333 0.0^7579 0.0^7996 0.0^170 0.06287 5
0.0^11260 0.0^11523 0.0^10104 0.0^10206 0.0^10402 0.0^10777 0.0^9149 0.0^9282 0.0^9530 0.09987 6

 

−4.417 −3.891 −3.291 −3.090 −2.576 −2.326 −1.960 −1.643 −1.282 Z_{α}
0.000005 0.0001 0.0005 0.001 0.005 0.010 0.025 0.05 0.10 F(Z_{α})
0.999995 0.9999 0.9995 0.999 0.995 0.990 0.975 0.95 0.90 R(Z_{α})

Related Answered Questions