Obtain the matrix in reduced row echelon form that is row equivalent to the matrix
A = \left [ \begin{matrix} 1 & 1 & 2 & -2 & 2 \\ 3 & 3 & 5 & 0 & 2 \end{matrix} \right ]
Obtain the matrix in reduced row echelon form that is row equivalent to the matrix
A = \left [ \begin{matrix} 1 & 1 & 2 & -2 & 2 \\ 3 & 3 & 5 & 0 & 2 \end{matrix} \right ]
We begin by using Gaussian elimination to put the matrix into REF
A = \left [ \begin{matrix} 1 & 1 & 2 & -2 & 2 \\ 3 & 3 & 5 & 0 & 2 \end{matrix} \right ] \begin{matrix} \\ R_{2} – 3R_{1} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 1 & 2 & -2 & 2 \\ 0 & 0 & -1 & 6 & -4 \end{matrix} \right ]
We also need to put zeros above pivots and to ensure that each pivot is a 1.
\left [ \begin{matrix} 1 & 1 & 2 & -2 & 2 \\ 0 & 0 & -1 & 6 & -4 \end{matrix} \right ] \begin{matrix}R_{1} + 2R_{2} \\ \\ \end{matrix} \left [ \begin{matrix} 1 & 1 & 0 & 10 & -6 \\ 0 & 0 & -1 & 6 & -4 \end{matrix} \right ] \begin{matrix} \\ (-1)R_{2} \end{matrix} \thicksim \\
\left [ \begin{matrix} 1 & 1 & 0 & 10 & -6 \\ 0 & 0 & 1 & -6 & 4 \end{matrix} \right ]
This final matrix is in reduced row echelon form.