(a) In order to determine the design magnitude of the freely available discharge, Equation 4.187 h_{turbine} = \frac{(P_{t})_{in}}{\gamma Q} = \frac{(P_{t})_{out}/\eta _{turbine}}{\gamma Q} = \frac{wT_{shaft,out}/\eta _{turbine}}{\gamma Q} is applied as follows:
\rho : = 998 \frac{kg}{m^{3}} g: = 9.81 \frac{m}{sec^{2}} \gamma : = \rho .g = 9.79 \times 10^{3} \frac{kg}{m^{2}s^{2}}
P_{tin}: = 800 kW h_{turbine}: = 25 m
Guess value: Q: = 2 \frac{m^{3}}{sec}
Given
P_{tin} = \gamma .Q. h_{turbine}
Q: = Find (Q)= 3.269 \frac{m^{3}}{s}
(b)–(e) In order to determine the design level of headwater in reservoir 1 in order to
accommodate the design magnitude of the freely available head to be extracted
by the turbine, h{_turbine} and the pressure and velocity at point a, the energy equation is applied between points 1 and a and between points a and b, assuming the pressure at point b is the vapor pressure of water at 20^{\circ} C . In order to determine the maximum allowable height of the draft tube, Z_{b} without causing cavitation, the energy equation is applied between points b and 2, assuming the pressure at point b is the vapor pressure of water at 20^{\circ} C . And, in order to determine the design pipe size in order to accommodate the design magnitude of the required freely available discharge, the continuity equation is applied between points a and b. Thus, from Table A.2 in Appendix A, for water at 20^{\circ} C , the vapor pressure, p_{v} is 2.34× 10^{3} N/m^{2} abs. However, because the vapor pressure is given in absolute pressure, the corresponding gage pressure is computed by subtracting the atmospheric pressure as follows: p_{gage} = p_{abs} − p_{atm} , where the standard atmospheric pressure is 101.325× 10^{3} N/m^{2} abs.
P_{1}: = 0 \frac{N}{m^{2}} V_{1}: = 0 \frac{m}{sec} P_{2}: = 0 \frac{N}{m^{2}} V_{2}: = 0 \frac{m}{sec} Z_{2}: = 0 m
P_{V}: = 2.34 \times 10^{3} \frac{N}{m^{2}} – 101.325 \times 10^{3} \frac{N}{m^{2}} – 9.899 \times 10^{4} \frac{N}{m^{2}}
P_{b}: = P_{V} = – 9.899 \times 10^{4} \frac{N}{m^{2}}
k_{ent}: = 0.5 k_{diffuser}: = 0.5 f: = 0.15 L: = 150 m
Guess value: Z_{1}: = 100 m P_{a}: = 2 \times 10^{3} \frac{N}{m^{2}} V_{a}: = 1 \frac{m}{sec} V_{b}: = 2 \frac{m}{sec}
D_{a}: = 0.5 m D_{b}: = 0.5 m Z_{a}: = 2 m Z_{b}: = 2 m
h_{fmaj}: = 1 m h_{fent}: = 1 m h_{ fdiffuser}: = 1 m
Given
\frac{P_{1}}{\gamma } + Z_{1} + \frac{V^{2}_{1} }{2.g} – h_{fmaj} – h_{fent} = \frac{P_{a}}{\gamma } + Z_{a} + \frac{V^{2}_{a} }{2.g}
\frac{P_{a}}{\gamma } + Z_{a} + \frac{V^{2}_{a} }{2.g} – h_{turbine} =\frac{P_{b}}{\gamma } + Z_{b} + \frac{V^{2}_{b} }{2.g}
\frac{P_{b}}{\gamma } + Z_{b} + \frac{V^{2}_{b} }{2.g} – h_{ fdiffuser} – \frac{P_{2}}{\gamma } + Z_{2} + \frac{V^{2}_{2} }{2.g}
h_{fmaj} = f \frac{L}{D_{a}} \frac{V^{2}_{a}}{2.g} h_{fent} = k_{ent}\frac{V^{2}_{a}}{2.g} h_{ fdiffuser} = k_{diffuser}\frac{V^{2}_{b}}{2.g}
Q = V_{a} \frac{\pi . D^{2}_{a} }{4} Q = V_{b} \frac{\pi . D^{2}_{b} }{4} Z_{a} = Z_{b} D_{a} = D_{b}
\left ( \begin{matrix}Z_{1} \\ P_{a} \\ V_{a} \\ V_{b} \\ D_{a} \\ D_{b} \\ Z_{a} \\ Z_{b} \\ h_{fmaj} \\ h_{fent} \\ h_{ fdiffuser} \end{matrix} \right ) : = Find (Z_{1}, P_{a}, V_{a}, V_{b}, D_{a}, D_{b}, Z_{a}, Z_{b}, h_{fmaj}, h_{fent}, h_{ fdiffuser})
Z_{1}: = 57.405 m P_{a}: = 1.458 \times 10^{5} \frac{N}{m^{2}} V_{a}: = 4.982 \frac{m}{sec}
V_{b}: = 4.982 \frac{m}{sec}
D_{a}: = 0.914 m D_{b}: = 0.914 m Z_{a}: = 9.478 m Z_{b}: = 9.478 m
h_{fmaj}: = 31.14 m h_{fent}: = 0.632 m h_{ fdiffuser}: = 0.632 m
(f) The EGL and HGL are illustrated in Figure EP 4.24.
Table A.2 |
Physical Properties for Water at Standard Sea-Level Atmospheric Pressure as a Function of Temperature |
Temperature
(θ)
^{\circ } F |
Density
(ρ)
slug/ft^{3} |
Specific
Weight
(γ)
Ib/ft^{3} |
Absolute
(Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{3} |
Kinematic
Viscosity
(ν)
10^{-6} ft^{2}/sec |
Surface
Tension
(σ)
lb=ft |
Vapor
Pressure
(\rho _{\nu } )
psia |
Bulk
Modulus
of Elasticity
(E_{\upsilon } )
psi |
32 |
1.940 |
62.42 |
37.46 |
19.31 |
0.00518 |
0.0885 |
293.000 |
40 |
1.940 |
62.43 |
32.29 |
16.64 |
0.00514 |
0.1220 |
294.000 |
50 |
1.940 |
62.41 |
27.35 |
14.10 |
0.00509 |
0.1780 |
305.000 |
60 |
1.938 |
62.37 |
23.59 |
12.17 |
0.00504 |
0.2560 |
311.000 |
70 |
1.936 |
62.30 |
20.50 |
10.59 |
0.00498 |
0.3630 |
320.000 |
80 |
1.934 |
62.22 |
17.99 |
9.30 |
0.00492 |
0.5070 |
322.000 |
90 |
1.931 |
62.11 |
15.95 |
8.26 |
0.00486 |
0.6980 |
323.000 |
100 |
1.927 |
62.00 |
14.24 |
7.39 |
0.00480 |
0.9490 |
327.000 |
110 |
1.923 |
61.86 |
12.84 |
6.67 |
0.00473 |
1.2750 |
331.000 |
120 |
1.918 |
61.71 |
11.68 |
6.09 |
0.00467 |
1.6920 |
333.333 |
130 |
1.913 |
61.55 |
10.69 |
5.58 |
0.00460 |
2.2200 |
334.000 |
140 |
1.908 |
61.38 |
9.81 |
5.14 |
0.00454 |
2.8900 |
330.000 |
150 |
1.902 |
61.20 |
9.05 |
4.76 |
0.00447 |
3.7200 |
328.000 |
160 |
1.896 |
61.00 |
8.38 |
4.42 |
0.00441 |
4.7400 |
326.000 |
170 |
1.890 |
60.80 |
7.80 |
4.13 |
0.00434 |
5.9900 |
322.000 |
180 |
1.883 |
60.58 |
8.26 |
3.85 |
0.00427 |
7.5100 |
318.000 |
190 |
1.876 |
60.36 |
6.78 |
3.62 |
0.00420 |
9.3400 |
313.000 |
200 |
1.868 |
60.12 |
6.37 |
3.41 |
0.00413 |
11.5200 |
308.000 |
212 |
1.860 |
59.83 |
5.93 |
3.19 |
0.00404 |
14.6900 |
300.000 |
^{\circ } C |
kg/m^{3} |
KN/m^{3} |
N-sec/m^{2} |
10^{-6} m^{2} /sec |
N/m |
KN/m^{2} abs |
10^{6} KN/m^{2} |
0 |
999.8 |
9.805 |
0.001781 |
1.785 |
0.0756 |
0.6110 |
2.02 |
5 |
1000.0 |
9.807 |
0.001518 |
1.519 |
0.0749 |
0.872 |
2.06 |
10 |
999.7 |
9.804 |
0.001307 |
1.306 |
0.0742 |
1.230 |
2.10 |
15 |
999.1 |
9.798 |
0.001139 |
1.139 |
0.0735 |
1.710 |
2.14 |
20 |
998.2 |
9.789 |
0.001002 |
1.003 |
0.0725 |
2.340 |
2.18 |
25 |
997.0 |
9.777 |
0.000890 |
0.893 |
0.0720 |
3.170 |
2.22 |
30 |
995.7 |
9.765 |
0.000798 |
0.800 |
0.0712 |
4.240 |
2.25 |
40 |
992.2 |
9.731 |
0.000653 |
0.659 |
0.0696 |
7.380 |
2.28 |
50 |
988.0 |
9.690 |
0.000547 |
0.553 |
0.0697 |
12.330 |
2.29 |
60 |
983.2 |
9.642 |
0.000466 |
0.474 |
0.0662 |
19.920 |
2.28 |
70 |
977.8 |
9.589 |
0.000404 |
0.413 |
0.0644 |
31.160 |
2.25 |
80 |
971.8 |
9.530 |
0.000356 |
0.364 |
0.0626 |
47.340 |
2.20 |
90 |
965.3 |
9.467 |
0.000315 |
0.326 |
0.0608 |
70.100 |
2.14 |
100 |
958.4 |
9.399 |
0.000282 |
0.294 |
0.0589 |
101.330 |
2.07 |