\text { Given } P_{\max }=150 N \quad P_{\min .}=50 N \quad d=3 mm .
D=18 mm \quad S_{u t}=1430 N / mm ^{2} .
Step I Mean and amplitude shear stresses
C=\frac{D}{d}=\frac{18}{3}=6 ..
From Eq. (10.7) and (10.5),
K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C} (10.7).
K_{s}=\left(1+\frac{0.5}{C}\right) (10.5).
K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}=\frac{4(6)-1}{4(6)-4}+\frac{0.615}{6} .
= 1.2525.
K_{s}=1+\frac{0.5}{C}=1+\frac{0.5}{6}=1.0833 .
P_{m}=\frac{1}{2}\left(P_{\max .}+P_{\min .}\right)=\frac{1}{2}(150+50)=100 N .
P_{a}=\frac{1}{2}\left(P_{\max .}-P_{\min .}\right)=\frac{1}{2}(150-50)=50 N .
From Eq. (10.18) and (10.19),
\tau_{m}=K_{s}\left(\frac{8 P_{m} D}{\pi d^{3}}\right) (10.18).
\tau_{a}=K\left(\frac{8 P_{a} D}{\pi d^{3}}\right) (10.19).
\tau_{m}=K_{s}\left(\frac{8 P_{m} D}{\pi d^{3}}\right)=(1.0833)\left(\frac{8(100)(18)}{\pi(3)^{3}}\right) .
=183.91 N / mm ^{2} .
\tau_{a}=K\left(\frac{8 P_{a} D}{\pi d^{3}}\right)=(1.2525)\left(\frac{8(50)(18)}{\pi(3)^{3}}\right) .
=106.32 N / mm ^{2} .
Step II Factor of safety
From. Eq. (10.21), the relationships for oil-hardened and tempered steel wires are as follows:
S_{s y}=0.45 S_{u t} (10.21).
S_{s e}^{\prime}=0.22 S_{u t}=0.22(1430)=314.6 N / mm ^{2} .
S_{s y}=0.45 S_{u t}=0.45(1430)=643.5 N / mm ^{2} .
From Eq. (10.22),
\frac{\tau_{a}}{\frac{S_{s y}}{\left(f_{s}\right)}-\tau_{m}}=\frac{\frac{1}{2} S_{s e}^{\prime}}{S_{s y}-\frac{1}{2} S_{s e}^{\prime}} (10.22).
\frac{\tau_{a}}{\left(\frac{S_{s y}}{f s}\right)-\tau_{m}}=\frac{\frac{1}{2} S_{s e}^{\prime}}{S_{s y}-\frac{1}{2} S_{s e}^{\prime}} .
\text { or } \frac{106.32}{\left(\frac{643.5}{f s}\right)-183.91}=\frac{\frac{1}{2}(314.6)}{643.5-\frac{1}{2}(314.6)} .
\frac{106.32}{\left(\frac{643.5}{f s}\right)-183.91}=\frac{157.3}{486.2} .
\frac{643.5}{(f s)}-183.91=\frac{106.32(486.2)}{157.3}=328.63 .
\frac{643.5}{(f s)}=183.91+328.63 .
(fs) = 1.26.