\text { Given } \quad F_{r}=8 kN \quad F_{a}=3 kN \quad L_{10 h }=20000 hr .
n = 1200 rpm d = 75 mm
Step I X and Y factors
When the bearing is subjected to radial as well as axial load, the values of X and Y factors are obtained from Table 15.4 by trial and error procedure. It is observed from Table 15.4, that values of X are constant and the values of Y vary only in case when,
Table 15.4 X and Y factors for single-row deep groove ball bearings
e |
\left(\frac{F_{a}}{F_{r}}\right)>e |
\left(\frac{F_{a}}{F_{r}}\right) \leq e |
\left(\frac{F_{a}}{C_{0}}\right) |
Y |
X |
Y |
X |
0.22 |
2.0 |
0.56 |
0 |
1 |
0.025
|
0.24 |
1.8 |
0.56 |
0 |
1 |
0.040 |
0.27 |
1.6 |
0.56 |
0 |
1 |
0.070 |
0.31 |
1.4 |
0.56 |
0 |
1 |
0.130 |
0.37 |
1.2 |
0.56 |
0 |
1 |
0.250 |
0.44 |
1.0 |
0.56 |
0 |
1 |
0.500 |
\left(\frac{F_{a}}{F_{r}}\right)>e .
In this case, the value of Y varies from 1.0 to 2.0.
We will assume the average value 1.5 as the first trial value for the factor Y. Therefore,
X=0.56 \quad Y=1.5 \quad F_{r}=8000 N \quad F_{a}=3000 N .
From Eq. (15.3),
P=X F_{r}+Y F_{a} (15.3).
P=X F_{r}+Y F_{a}=0.56(8000)+1.5(3000)=8980 N .
From Eq. (15.9),
L_{10}=\frac{60 n L_{10 h }}{10^{6}} (15.9).
L_{10}=\frac{60 n L_{10 h }}{10^{6}}=\frac{60(1200)(20000)}{10^{6}} .
1440 million rev.
From Eq. (15.7),
C=P\left(L_{10}\right)^{1 / 3} (15.7)
C=P\left(L_{10}\right)^{1 / 3}=(8980)(1440)^{1 / 3}=101406.04 N .
From Table 15.5, it is observed that for the shaft of 75 mm diameter, Bearing No. 6315 (C = 112 000) is suitable for the above data. For this bearing,
Table 15.5 Dimensions and static and dynamic load capacities of single-row deep groove ball bearings
Designation |
Basic load
ratings (N) |
Principal
dimensions (mm) |
C_{0} |
C |
B |
D |
d |
61800 |
630 |
1480 |
5 |
19 |
10 |
6000 |
1960 |
4620 |
8 |
26 |
|
6200 |
2240 |
5070 |
9 |
30 |
|
6300 |
3750 |
8060 |
11 |
35 |
|
61801 |
695 |
1430 |
5 |
21 |
|
6001 |
2240 |
5070 |
8 |
28 |
|
6201 |
3100 |
6890 |
10 |
32 |
|
6301 |
4650 |
9750 |
12 |
37 |
|
61802 |
815 |
1560 |
5 |
24 |
15 |
6002 |
2500 |
5590 |
9 |
32 |
|
6202 |
3550 |
7800 |
11 |
35 |
|
6302 |
5400 |
11400 |
13 |
42 |
|
61803 |
930 |
1680 |
5 |
26 |
17 |
6003 |
2800 |
6050 |
10 |
35 |
|
6202 |
4500 |
9560 |
12 |
40 |
|
6303 |
6550 |
13500 |
14 |
47 |
|
6403 |
11800 |
22900 |
17 |
62 |
|
61804 |
1500 |
2700 |
7 |
32 |
20 |
16404 |
3400 |
7020 |
8 |
42 |
|
6004 |
4500 |
9360 |
12 |
42 |
|
6204 |
6200 |
12700 |
14 |
47 |
|
6304 |
7800 |
15900 |
15 |
52 |
|
6404 |
16600 |
30700 |
19 |
72 |
|
61805 |
1960 |
3120 |
7 |
37 |
25 |
16005 |
4000 |
7610 |
8 |
47 |
|
6005 |
5600 |
11200 |
12 |
47 |
|
6205 |
6950 |
14000 |
15 |
52 |
|
6305 |
11400 |
22500 |
17 |
62 |
|
6405 |
19600 |
35800 |
21 |
80 |
|
61806 |
2080 |
3120 |
7 |
42 |
30 |
16006 |
5850 |
11200 |
9 |
55 |
|
6006 |
6800 |
13300 |
13 |
55 |
|
6206 |
10000 |
19500 |
16 |
62 |
|
6306 |
14600 |
28100 |
19 |
72 |
|
6406 |
24000 |
43600 |
23 |
90 |
|
61807 |
3000 |
4030 |
7 |
47 |
35 |
16007 |
6950 |
12400 |
9 |
62 |
|
6007 |
8500 |
15900 |
14 |
62 |
|
6207 |
13700 |
25500 |
17 |
72 |
|
6307 |
18000 |
33200 |
21 |
80 |
|
6407 |
31000 |
55300 |
25 |
100 |
|
61808 |
3350 |
4160 |
7 |
52 |
40 |
16008 |
7800 |
13300 |
9 |
68 |
|
6008 |
9300 |
16800 |
15 |
68 |
|
6208 |
16600 |
30700 |
18 |
80 |
|
6308 |
22400 |
41000 |
23 |
90 |
|
6408 |
36500 |
63700 |
27 |
110 |
|
61809 |
3800 |
6050 |
7 |
58 |
45 |
16009 |
9300 |
15600 |
10 |
75 |
|
6009 |
12200 |
21200 |
16 |
75 |
|
6209 |
19600 |
33200 |
19 |
85 |
|
6309 |
30000 |
52700 |
25 |
100 |
|
6409 |
45500 |
76100 |
29 |
120 |
|
61810 |
4250 |
6240 |
7 |
65 |
50 |
16010 |
10000 |
16300 |
10 |
80 |
|
6010 |
13200 |
21600 |
16 |
80 |
|
6210 |
19600 |
35100 |
20 |
90 |
|
6310 |
36000 |
61800 |
27 |
110 |
|
6410 |
5200 |
87100 |
31 |
130 |
|
61811 |
5600 |
8320 |
9 |
72 |
55 |
16011 |
12200 |
19500 |
11 |
90 |
|
6011 |
17000 |
28100 |
18 |
90 |
|
6211 |
25000 |
43600 |
21 |
100 |
|
6311 |
41500 |
71500 |
29 |
120 |
|
6411 |
63000 |
99500 |
33 |
140 |
|
61812 |
6100 |
8710 |
10 |
78 |
60 |
16012 |
13200 |
19900 |
11 |
95 |
|
6012 |
18300 |
29600 |
18 |
95 |
|
6212 |
28000 |
47500 |
22 |
110 |
|
6312 |
48000 |
81900 |
31 |
130 |
|
6412 |
69500 |
108000 |
35 |
150 |
|
61813 |
8300 |
11700 |
10 |
85 |
65 |
16013 |
14600 |
21200 |
11 |
100 |
|
6013 |
19600 |
30700 |
18 |
100 |
|
6213 |
34000 |
55900 |
23 |
120 |
|
6313 |
56000 |
92300 |
33 |
140 |
|
6413 |
78000 |
119000 |
37 |
160 |
|
61814 |
9150 |
12100 |
10 |
90 |
70 |
16014 |
19000 |
28100 |
13 |
110 |
|
6014 |
24500 |
37700 |
20 |
110 |
|
6214 |
37500 |
61800 |
24 |
125 |
|
6314 |
63000 |
104000 |
35 |
150 |
|
6414 |
104000 |
143000 |
42 |
180 |
|
61815 |
9800 |
12500 |
10 |
95 |
75 |
10615 |
20000 |
28600 |
13 |
115 |
|
6015 |
26000 |
39700 |
20 |
115 |
|
6215 |
40500 |
66300 |
25 |
130 |
|
6315 |
72000 |
112000 |
37 |
160 |
|
6415 |
114000 |
1530000 |
45 |
190 |
|
C_{o}=72000 N .
Therefore,
\left(\frac{F_{a}}{F_{r}}\right)=\left(\frac{3000}{8000}\right)=0.375 .
and \left(\frac{F_{a}}{C_{o}}\right)=\left(\frac{3000}{72000}\right)=0.04167 .
Referring to Table 15.4,
e=0.24 \text { ( approximately) and }\left(\frac{F_{a}}{F_{r}}\right)>e .
The value of Y is obtained by linear interpolation.
Y=1.8-\frac{(1.8-1.6)}{(0.07-0.04)} \times(0.04167-0.04)=1.79 .
and X = 0.56
Step II Dynamic load capacity
P=X F_{r}+Y F_{a}=0.56(8000)+1.79(3000)=9850 N .
C=P\left(L_{10}\right)^{1 / 3}=9850(1440)^{1 / 3}=111230.46 N .
Step III Selection of bearing
From Table 15.5, Bearing No. 6315 (C = 112 000) is suitable for the above application.