Question 6.18: Estimate Kf and q for the steel shaft given in Ex. 6–6, p. 2...

Estimate KfK_{f} and q for the steel shaft given in Ex. 6–6, p. 288.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Ex. 6–6, a steel shaft with SutS_{ut} = 690 Mpa and a shoulder with a fillet of 3 mm was found to have a theoretical stress-concentration-factor of Kt=˙K_{t}\dot{=}1.65. From Table 6–15,

 

Table 6–15  Heywood’s Parameter a\sqrt {a} and coefficients of variation CKfC_{Kf} for steels

Coefficient of Variation CKfC_{Kf} a(mm),Sut\sqrt{a}(\sqrt {mm}) ,S_{ut} in MPa a(in),Sut\sqrt{a}(\sqrt {in}) ,S_{ut} in kpsi Notch Type
0.10 174/SutS_{ut} 5/SutS_{ut} Transverse hole
0.11 139/SutS_{ut} 4/SutS_{ut} Shoulder
0.15 104/SutS_{ut} 3/SutS_{ut} Groove

a=139Sut=139690=0.2014mm\sqrt {a} =\frac {139}{S_{ut}} =\frac {139}{690} = 0.2014\sqrt {mm}

From Eq. (6–78),

Kf=Kt1+2(Kt1)Ktar\overline {K}_{f} =\frac {K_{t}}{1 +\frac {2(K_{t} − 1)}{K_{t}} \frac {\sqrt {a}}{\sqrt {r}}}                   (6–78)

Kf=Kt1+2(Kt1)Ktar=1.651+2(1.651)1.650.20143=1.51\overline {K}_{f} =\frac {K_{t}}{1 +\frac {2(K_{t} − 1)}{K_{t}} \frac {\sqrt {a}}{\sqrt {r}}}=\frac {1.65}{1 +\frac {2(1.65− 1)}{1.65} \frac {\sqrt {0.2014}}{\sqrt {3}}}=1.51

which is 2.5 percent lower than what was found in Ex. 6–6.

From Table 6–15, CKfC_{Kf} = 0.11. Thus from Eq. (6–79),

Kf=KfLN(1,CKf)K_{f} =\overline{ K}_{f} LN (1,C_{Kf})                (6–79)

Kf=1.51LN(1,0.11)K_{f}= 1.51 LN(1, 0.11)

From Eq. (6–77), with KtK_{t}= 1.65

qˉ=Kˉf1Kt1σ^q=CKˉfKt1Cq=CKˉfKˉf1\begin{aligned} \bar{q} &=\frac{\bar{K}_{f}-1}{K_{t}-1} \\ \hat{\sigma}_{q} &=\frac{C \bar{K}_{f}}{K_{t}-1} \\ C_{q} &=\frac{C \bar{K}_{f}}{\bar{K}_{f}-1} \end{aligned}           (6-77)

 

 

q=1.5111.651=0.785\overline {q} =\frac {1.51 − 1}{1.65 − 1} = 0.785

Cq=CKfKfKf1=0.11(1.51)1.511=0.326C_{q} =\frac {C_{Kf} \overline{K}_{f}}{\overline{K}_{f}− 1} =\frac {0.11(1.51)}{1.51 − 1} = 0.326

σ^q=Cqq=0.326(0.785)=0.256\hat{σ}_{q} = C_{q} \overline {q} = 0.326(0.785) = 0.256

So,

q = LN(0.785, 0.256)

Related Answered Questions