Question 6.20: A rotating shaft experiences a steady torque T = 1360LN(1, 0...

A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) lbf · in, and at a shoulder with a 1.1-in small  diameter, a fatigue stress-concentration factor K_{f} = 1.50LN(1, 0.11), K_{f s} = 1.28LN(1, 0.11), and at that location a bending moment of M = 1260LN(1, 0.05) lbf · in. The material of which the shaft is machined is hot-rolled 1035 with S_{ut} = 86.2LN(1, 0.045) kpsi and S_{y} = 56.0LN(1, 0.077) kpsi. Estimate the reliability using a stochastic Gerber failure zone.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Establish the endurance strength. From Eqs. (6–70) to (6–72) and Eq. (6–20), p. 280,

S^{′}{e}= \begin{cases} 0.506 \overline {S}_{ut} LN(1, 0.138)  kpsi   or  MPa & \overline {S}_{ut} ≤ 212  kpsi (1460 MPa) \\ 107LN(1, 0.139)  kpsi & \overline {S}_{ut} > 212  kpsi \\ LN(1, 0.139)  MPa & \overline {S}_{ut} > 1460  MPa \end{cases}             (6-70)

k_{a} = a \overline{S}^{b}_{ut} LN(1,C)                ( \overline{S}_{ut} in kpsi or MPa)                       (6–72)

k_{b}= \begin{cases} (d/0.3)^{−0.107} = 0.879d^{−0.107} & 0.11 ≤ d ≤ 2 in \\ 0.91d^{−0.157} & 2 < d ≤ 10 in \\  (d/7.62)^{−0.107} = 1.24d^{−0.107} & 2.79 ≤ d ≤ 51 mm \\ 1.51d^{−0.107} & 51 < d ≤ 254 mm \end{cases}               (6-20)

S^{′}_{e} = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138)  kpsi
k_{a} = 2.67(86.2)^{−0.265}LN(1, 0.058) = 0.820LN(1, 0.058)
k_{b} = (1.1/0.30)^{−0.107} = 0.870
k_{c} = k_{d} = k_{f} = LN(1, 0)
S_{e} = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)
\overline{S}_{e} = 0.820(0.870)43.6 = 31.1  kpsi
C_{Se} = (0.058^{2} + 0.138^{2})^{1/2} = 0.150

and so S_{e} = 31.1LN(1, 0.150)  kpsi.

Stress (in kpsi):

σ_{a} =\frac {32K_{f}M_{a}}{πd^{3}} =\frac {32(1.50)LN(1, 0.11)1.26LN(1, 0.05)}{π(1.1)^{3}}

\overline{σ}_{a} =\frac {32(1.50)1.26}{π(1.1)^{3}} = 14.5  kpsi

C_{σ a} = (0.11^{2} + 0.05^{2})^{1/2} = 0.121

τ_{m} =\frac {16K_{f s}T_{m}}{πd^{3}} =\frac {16(1.28)LN(1, 0.11)1.36LN(1, 0.05)}{π(1.1)^{3}}

\overline {τ}_{m} =\frac {16(1.28)1.36}{π(1.1)^{3}} = 6.66  kpsi

C_{τm} = (0.11^{2} + 0.05^{2})^{1/2} = 0.121

\overline{σ}^{′}_{a} =\left(\overline {σ}^{2}_{a} + 3 \overline{τ}^{2}_{a}\right)^{1/2}= [14.5^{2} + 3(0)^{2}]^{1/2} = 14.5  kpsi

\overline {σ}^{′}_{m} =(\overline{σ}^{2}_{m} + 3 \overline {τ}^{ 2}_{m})^{1/2}= [0 + 3(6.66)^{2}]^{1/2} = 11.54  kpsi

r =\frac { \overline{σ}^{′}_{a}}{\overline{σ}^{′}_{m}} =\frac {14.5}{11.54} = 1.26

Strength: From Eqs. (6–80) and (6–81),

\overline {S}_{a} =\frac {r^{2} \overline{S}^{2}_{ut}}{2 \overline {S}_{e}} \left[ -1+\sqrt {1 +\left(\frac {2 \overline{S}_{e}}{r\overline {S}_{ut}}\right)^{2}}\right]                (6-80)

C_{Sa} =\frac {(1 + C_{Sut} )^{2}}{1 + C_{Se}} \frac { \left\{-1+\sqrt {1+\left[ \frac {2 \overline{S}_{e}(1 + C_{Se})}{r \overline{S}_{ut} (1 + C_{Sut} )}\right]^{2}}\right\}} {\left[-1+ \sqrt{1+\left (\frac {2 \overline {S}_{e}}{r \overline {S}_{ut}}\right)^{2} }\right]}-1                      (6-81)

\overline{S}_{a} =\frac {1.26^{2}86.2^{2}}{2(31.1)}  \left\{ -1+ \sqrt{ 1+\left[ \frac {2(31.1)}{1.26(86.2)}\right]^{2} } \right\}= 28.9 kpsi

C_{Sa} =\frac {(1 + 0.045 )^{2}}{1 + 0.150} \frac {-1+\sqrt {1+\left[ \frac {2 (31.1)(1 + 0.15)}{1.26 (86.2) (1 +0.045 )}\right]^{2}}} {-1+ \sqrt{1+\left [\frac {2 (31.1)}{1.26 (86.2)}\right]^{2} }}-1= 0.134

Reliability: Since S_{a} = 28.9LN(1, 0.134) kpsi and σ^{′}_{a} = 14.5LN(1, 0.121) kpsi, Eq. (5–44), p. 242, gives

z =\frac {0 − μ_{y}}{\hat{σ}_{y}} = − \frac{μ_{y}}{σ_{y}} =−\frac {ln μ_{n} − ln \sqrt {1 + C^{2}_{n}}}{ \sqrt {ln(1 + C^{2}_{n})}}\dot{=}  \frac {− ln (μ_{n}/ \sqrt {1 + C^{2}_{n}}} {\sqrt {ln  (1 + C^{2}_{n})}}                 (5-44)

z =−\frac {ln\left(\frac {\overline{S}_{a}}{\overline{σ}_{a}} \sqrt {\frac {1 + C^{2}_{σa}}{1 +C^{2}_{S_{a}}}}\right)}{\sqrt{ln[(1 +C^{2}_{S_{a}})(1 + C^{2}_{σa})]}}=−\frac {ln\left(\frac {28.9}{14.5} \sqrt {\frac {1 + 0.121^{2}}{1 +0.134^{2}}}\right)}{\sqrt{ln[(1 +0.134^{2})(1 + 0.121^{2})]}}= −3.83

From Table A–10 the probability of failure is p_{f} = 0.000 065, and the reliability is, against fatigue,

R = 1 − p_{f} = 1 − 0.000 065 = 0.999 935

Table A–10
Cumulative Distribution Function of Normal (Gaussian) Distribution

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00
0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 0.0
0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 0.1
0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 0.2
0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 0.3
0.3121 0.3156 0.3192 0.3238 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 0.4
0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 0.5
0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 0.6
0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 0.7
0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 0.8
0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 0.9
0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 1.0
0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 1.1
0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 1.2
0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 1.3
0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 1.4
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 1.5
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 1.6
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 1.7
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 1.8
0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 1.9
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 2.0
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 2.1
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 2.2
0.00842 0.00866 0.00889 0.00914 0.00939 0.00964 0.00990 0.0102 0.0104 0.0107 2.3
0.00639 0.00657 0.00676 0.00695 0.00714 0.00734 0.00755 0.00776 0.00798 0.00820 2.4
0.00480 0.00494 0.00508 0.00523 0.00539 0.00554 0.00570 0.00587 0.00604 0.00621 2.5
0.00357 0.00368 0.00379 0.00391 0.00402 0.00415 0.00427 0.00440 0.00453 0.00466 2.6
0.00264 0.00272 0.00280 0.00289 0.00298 0.00307 0.00317 0.00326 0.00336 0.00347 2.07
0.00193 0.00199 0.00205 0.00212 0.00219 0.00226 0.00233 0.00240 0.00248 0.00256 2.8
0.00139 0.00144 0.00149 0.00154 0.00159 0.00164 0.00169 0.00175 0.00181 0.00187 2.9

 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Z_{α}
0.0^{4}481 0.0^{4}723 0.0^{3}108 0.0^{3}159 0.0^{3}233 0.0^{3}337 0.0^{3}483 0.0^{3}687 0.0^{3}968 0.00135 3
0.0^{6}479 0.0^{6}793 0.0^{5}130 0.0^{5}211 0.0^{5}340 0.0^{5}541 0.0^{5}854 0.0^{4}133 0.0^{4}207 0.0^{4}317 4
0.0^{8}182 0.0^{8}332 0.0^{8}599 0.0^{7}107 0.0^{7}190 0.0^{7}333 0.0^{7}579 0.0^{7}996 0.0^{6}170 0.0^{6}287 5
0.0^{11}260 0.0^{11}523 0.0^{10}104 0.0^{10}206 0.0^{10}402 0.0^{10}777 0.0^{9}149 0.0^{9}282 0.0^{9}530 0.0^{9}987 6

 

-4.417 −3.891 −3.291 −3.090 −2.576 −2.326 −1.960 −1.643 −1.282
0.000005 0.0001 0.0005 0.001 0.005 0.010 0.025 0.05 0.10 F( Z_{α})
0.999995 0.9999 0.9995 0.999 0.995 0.990 0.975 0.95 0.90 R( Z_{α})

 

The chance of first-cycle yielding is estimated by interfering S_{y} with σ^{′}_{max}. The quantity σ^{′}_{max} is formed from σ^{′}_{a}+ σ^{′}_{m}. The mean of {σ}^{′}_{max} is \overline{σ}^{′}_{a} +\overline{σ}^{′}_{m} = 14.5 + 11.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both COVs are 0.121, thus C_{σ  max} = 0.121. We interfere S_{y} = 56LN(1, 0.077) kpsi with {σ}^{′}_{max}= 26.04LN (1, 0.121) kpsi. The corresponding z variable is

z =−\frac {ln\left(\frac {56}{26.04} \sqrt {\frac {1 + 0.121^{2}}{1 +0.077^{2}}}\right)}{\sqrt{ln[(1 +0.077^{2})(1 + 0.121^{2})]}}= −5.39

which represents, from Table A–10, a probability of failure of  pproximately 0.0^{7}358 [which represents 3.58( 10^{−8})] of first-cycle yield in the fillet.

The probability of observing a fatigue failure exceeds the probability of a yield failure, something a deterministic analysis does not foresee and in fact could lead one to expect a yield failure should a failure occur. Look at the {σ}^{′}_{a}S_{a} interference and the {σ}^{′}_{max}S_{y} interference and examine the z expressions. These control the relative probabilities. A deterministic analysis is oblivious to this and can mislead. Check your statistics text for events that are not mutually exclusive, but are independent, to quantify the probability of failure:

p_{f} = p(yield) + p(fatigue) − p(yield  and  fatigue)
= p(yield) + p(fatigue) − p(yield)p(fatigue)
= 0.358(10^{−7}) + 0.65(10^{−4}) − 0.358(10^{−7})0.65(10^{−4}) = 0.650(10^{−4})
R = 1 − 0.650(10^{−4}) = 0.999 935

against either or both modes of failure.

 

Related Answered Questions