Establish the endurance strength. From Eqs. (6–70) to (6–72) and Eq. (6–20), p. 280,
S^{′}{e}= \begin{cases} 0.506 \overline {S}_{ut} LN(1, 0.138) kpsi or MPa & \overline {S}_{ut} ≤ 212 kpsi (1460 MPa) \\ 107LN(1, 0.139) kpsi & \overline {S}_{ut} > 212 kpsi \\ LN(1, 0.139) MPa & \overline {S}_{ut} > 1460 MPa \end{cases} (6-70)
k_{a} = a \overline{S}^{b}_{ut} LN(1,C) ( \overline{S}_{ut} in kpsi or MPa) (6–72)
k_{b}= \begin{cases} (d/0.3)^{−0.107} = 0.879d^{−0.107} & 0.11 ≤ d ≤ 2 in \\ 0.91d^{−0.157} & 2 < d ≤ 10 in \\ (d/7.62)^{−0.107} = 1.24d^{−0.107} & 2.79 ≤ d ≤ 51 mm \\ 1.51d^{−0.107} & 51 < d ≤ 254 mm \end{cases} (6-20)
S^{′}_{e} = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi
k_{a} = 2.67(86.2)^{−0.265}LN(1, 0.058) = 0.820LN(1, 0.058)
k_{b} = (1.1/0.30)^{−0.107} = 0.870
k_{c} = k_{d} = k_{f} = LN(1, 0)
S_{e} = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)
\overline{S}_{e} = 0.820(0.870)43.6 = 31.1 kpsi
C_{Se} = (0.058^{2} + 0.138^{2})^{1/2} = 0.150
and so S_{e} = 31.1LN(1, 0.150) kpsi.
Stress (in kpsi):
σ_{a} =\frac {32K_{f}M_{a}}{πd^{3}} =\frac {32(1.50)LN(1, 0.11)1.26LN(1, 0.05)}{π(1.1)^{3}}
\overline{σ}_{a} =\frac {32(1.50)1.26}{π(1.1)^{3}} = 14.5 kpsi
C_{σ a} = (0.11^{2} + 0.05^{2})^{1/2} = 0.121
τ_{m} =\frac {16K_{f s}T_{m}}{πd^{3}} =\frac {16(1.28)LN(1, 0.11)1.36LN(1, 0.05)}{π(1.1)^{3}}
\overline {τ}_{m} =\frac {16(1.28)1.36}{π(1.1)^{3}} = 6.66 kpsi
C_{τm} = (0.11^{2} + 0.05^{2})^{1/2} = 0.121
\overline{σ}^{′}_{a} =\left(\overline {σ}^{2}_{a} + 3 \overline{τ}^{2}_{a}\right)^{1/2}= [14.5^{2} + 3(0)^{2}]^{1/2} = 14.5 kpsi
\overline {σ}^{′}_{m} =(\overline{σ}^{2}_{m} + 3 \overline {τ}^{ 2}_{m})^{1/2}= [0 + 3(6.66)^{2}]^{1/2} = 11.54 kpsi
r =\frac { \overline{σ}^{′}_{a}}{\overline{σ}^{′}_{m}} =\frac {14.5}{11.54} = 1.26
Strength: From Eqs. (6–80) and (6–81),
\overline {S}_{a} =\frac {r^{2} \overline{S}^{2}_{ut}}{2 \overline {S}_{e}} \left[ -1+\sqrt {1 +\left(\frac {2 \overline{S}_{e}}{r\overline {S}_{ut}}\right)^{2}}\right] (6-80)
C_{Sa} =\frac {(1 + C_{Sut} )^{2}}{1 + C_{Se}} \frac { \left\{-1+\sqrt {1+\left[ \frac {2 \overline{S}_{e}(1 + C_{Se})}{r \overline{S}_{ut} (1 + C_{Sut} )}\right]^{2}}\right\}} {\left[-1+ \sqrt{1+\left (\frac {2 \overline {S}_{e}}{r \overline {S}_{ut}}\right)^{2} }\right]}-1 (6-81)
\overline{S}_{a} =\frac {1.26^{2}86.2^{2}}{2(31.1)} \left\{ -1+ \sqrt{ 1+\left[ \frac {2(31.1)}{1.26(86.2)}\right]^{2} } \right\}= 28.9 kpsi
C_{Sa} =\frac {(1 + 0.045 )^{2}}{1 + 0.150} \frac {-1+\sqrt {1+\left[ \frac {2 (31.1)(1 + 0.15)}{1.26 (86.2) (1 +0.045 )}\right]^{2}}} {-1+ \sqrt{1+\left [\frac {2 (31.1)}{1.26 (86.2)}\right]^{2} }}-1= 0.134
Reliability: Since S_{a} = 28.9LN(1, 0.134) kpsi and σ^{′}_{a} = 14.5LN(1, 0.121) kpsi, Eq. (5–44), p. 242, gives
z =\frac {0 − μ_{y}}{\hat{σ}_{y}} = − \frac{μ_{y}}{σ_{y}} =−\frac {ln μ_{n} − ln \sqrt {1 + C^{2}_{n}}}{ \sqrt {ln(1 + C^{2}_{n})}}\dot{=} \frac {− ln (μ_{n}/ \sqrt {1 + C^{2}_{n}}} {\sqrt {ln (1 + C^{2}_{n})}} (5-44)
z =−\frac {ln\left(\frac {\overline{S}_{a}}{\overline{σ}_{a}} \sqrt {\frac {1 + C^{2}_{σa}}{1 +C^{2}_{S_{a}}}}\right)}{\sqrt{ln[(1 +C^{2}_{S_{a}})(1 + C^{2}_{σa})]}}=−\frac {ln\left(\frac {28.9}{14.5} \sqrt {\frac {1 + 0.121^{2}}{1 +0.134^{2}}}\right)}{\sqrt{ln[(1 +0.134^{2})(1 + 0.121^{2})]}}= −3.83
From Table A–10 the probability of failure is p_{f} = 0.000 065, and the reliability is, against fatigue,
R = 1 − p_{f} = 1 − 0.000 065 = 0.999 935
Table A–10
Cumulative Distribution Function of Normal (Gaussian) Distribution

0.09 |
0.08 |
0.07 |
0.06 |
0.05 |
0.04 |
0.03 |
0.02 |
0.01 |
0.00 |
Z_{α} |
0.4641 |
0.4681 |
0.4721 |
0.4761 |
0.4801 |
0.4840 |
0.4880 |
0.4920 |
0.4960 |
0.5000 |
0.0 |
0.4247 |
0.4286 |
0.4325 |
0.4364 |
0.4404 |
0.4443 |
0.4483 |
0.4522 |
0.4562 |
0.4602 |
0.1 |
0.3859 |
0.3897 |
0.3936 |
0.3974 |
0.4013 |
0.4052 |
0.4090 |
0.4129 |
0.4168 |
0.4207 |
0.2 |
0.3483 |
0.3520 |
0.3557 |
0.3594 |
0.3632 |
0.3669 |
0.3707 |
0.3745 |
0.3783 |
0.3821 |
0.3 |
0.3121 |
0.3156 |
0.3192 |
0.3238 |
0.3264 |
0.3300 |
0.3336 |
0.3372 |
0.3409 |
0.3446 |
0.4 |
0.2776 |
0.2810 |
0.2843 |
0.2877 |
0.2912 |
0.2946 |
0.2981 |
0.3015 |
0.3050 |
0.3085 |
0.5 |
0.2451 |
0.2483 |
0.2514 |
0.2546 |
0.2578 |
0.2611 |
0.2643 |
0.2676 |
0.2709 |
0.2743 |
0.6 |
0.2148 |
0.2177 |
0.2206 |
0.2236 |
0.2266 |
0.2296 |
0.2327 |
0.2358 |
0.2389 |
0.2420 |
0.7 |
0.1867 |
0.1894 |
0.1922 |
0.1949 |
0.1977 |
0.2005 |
0.2033 |
0.2061 |
0.2090 |
0.2119 |
0.8 |
0.1611 |
0.1635 |
0.1660 |
0.1685 |
0.1711 |
0.1736 |
0.1762 |
0.1788 |
0.1814 |
0.1841 |
0.9 |
0.1379 |
0.1401 |
0.1423 |
0.1446 |
0.1469 |
0.1492 |
0.1515 |
0.1539 |
0.1562 |
0.1587 |
1.0 |
0.1170 |
0.1190 |
0.1210 |
0.1230 |
0.1251 |
0.1271 |
0.1292 |
0.1314 |
0.1335 |
0.1357 |
1.1 |
0.0985 |
0.1003 |
0.1020 |
0.1038 |
0.1056 |
0.1075 |
0.1093 |
0.1112 |
0.1131 |
0.1151 |
1.2 |
0.0823 |
0.0838 |
0.0853 |
0.0869 |
0.0885 |
0.0901 |
0.0918 |
0.0934 |
0.0951 |
0.0968 |
1.3 |
0.0681 |
0.0694 |
0.0708 |
0.0721 |
0.0735 |
0.0749 |
0.0764 |
0.0778 |
0.0793 |
0.0808 |
1.4 |
0.0559 |
0.0571 |
0.0582 |
0.0594 |
0.0606 |
0.0618 |
0.0630 |
0.0643 |
0.0655 |
0.0668 |
1.5 |
0.0455 |
0.0465 |
0.0475 |
0.0485 |
0.0495 |
0.0505 |
0.0516 |
0.0526 |
0.0537 |
0.0548 |
1.6 |
0.0367 |
0.0375 |
0.0384 |
0.0392 |
0.0401 |
0.0409 |
0.0418 |
0.0427 |
0.0436 |
0.0446 |
1.7 |
0.0294 |
0.0301 |
0.0307 |
0.0314 |
0.0322 |
0.0329 |
0.0336 |
0.0344 |
0.0351 |
0.0359 |
1.8 |
0.0233 |
0.0239 |
0.0244 |
0.0250 |
0.0256 |
0.0262 |
0.0268 |
0.0274 |
0.0281 |
0.0287 |
1.9 |
0.0183 |
0.0188 |
0.0192 |
0.0197 |
0.0202 |
0.0207 |
0.0212 |
0.0217 |
0.0222 |
0.0228 |
2.0 |
0.0143 |
0.0146 |
0.0150 |
0.0154 |
0.0158 |
0.0162 |
0.0166 |
0.0170 |
0.0174 |
0.0179 |
2.1 |
0.0110 |
0.0113 |
0.0116 |
0.0119 |
0.0122 |
0.0125 |
0.0129 |
0.0132 |
0.0136 |
0.0139 |
2.2 |
0.00842 |
0.00866 |
0.00889 |
0.00914 |
0.00939 |
0.00964 |
0.00990 |
0.0102 |
0.0104 |
0.0107 |
2.3 |
0.00639 |
0.00657 |
0.00676 |
0.00695 |
0.00714 |
0.00734 |
0.00755 |
0.00776 |
0.00798 |
0.00820 |
2.4 |
0.00480 |
0.00494 |
0.00508 |
0.00523 |
0.00539 |
0.00554 |
0.00570 |
0.00587 |
0.00604 |
0.00621 |
2.5 |
0.00357 |
0.00368 |
0.00379 |
0.00391 |
0.00402 |
0.00415 |
0.00427 |
0.00440 |
0.00453 |
0.00466 |
2.6 |
0.00264 |
0.00272 |
0.00280 |
0.00289 |
0.00298 |
0.00307 |
0.00317 |
0.00326 |
0.00336 |
0.00347 |
2.07 |
0.00193 |
0.00199 |
0.00205 |
0.00212 |
0.00219 |
0.00226 |
0.00233 |
0.00240 |
0.00248 |
0.00256 |
2.8 |
0.00139 |
0.00144 |
0.00149 |
0.00154 |
0.00159 |
0.00164 |
0.00169 |
0.00175 |
0.00181 |
0.00187 |
2.9 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |
0.0 |
Z_{α} |
0.0^{4}481 |
0.0^{4}723 |
0.0^{3}108 |
0.0^{3}159 |
0.0^{3}233 |
0.0^{3}337 |
0.0^{3}483 |
0.0^{3}687 |
0.0^{3}968 |
0.00135 |
3 |
0.0^{6}479 |
0.0^{6}793 |
0.0^{5}130 |
0.0^{5}211 |
0.0^{5}340 |
0.0^{5}541 |
0.0^{5}854 |
0.0^{4}133 |
0.0^{4}207 |
0.0^{4}317 |
4 |
0.0^{8}182 |
0.0^{8}332 |
0.0^{8}599 |
0.0^{7}107 |
0.0^{7}190 |
0.0^{7}333 |
0.0^{7}579 |
0.0^{7}996 |
0.0^{6}170 |
0.0^{6}287 |
5 |
0.0^{11}260 |
0.0^{11}523 |
0.0^{10}104 |
0.0^{10}206 |
0.0^{10}402 |
0.0^{10}777 |
0.0^{9}149 |
0.0^{9}282 |
0.0^{9}530 |
0.0^{9}987 |
6 |
-4.417 |
−3.891 |
−3.291 |
−3.090 |
−2.576 |
−2.326 |
−1.960 |
−1.643 |
−1.282 |
Z_{α} |
0.000005 |
0.0001 |
0.0005 |
0.001 |
0.005 |
0.010 |
0.025 |
0.05 |
0.10 |
F( Z_{α}) |
0.999995 |
0.9999 |
0.9995 |
0.999 |
0.995 |
0.990 |
0.975 |
0.95 |
0.90 |
R( Z_{α}) |
The chance of first-cycle yielding is estimated by interfering S_{y} with σ^{′}_{max}. The quantity σ^{′}_{max} is formed from σ^{′}_{a}+ σ^{′}_{m}. The mean of {σ}^{′}_{max} is \overline{σ}^{′}_{a} +\overline{σ}^{′}_{m} = 14.5 + 11.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both COVs are 0.121, thus C_{σ max} = 0.121. We interfere S_{y} = 56LN(1, 0.077) kpsi with {σ}^{′}_{max}= 26.04LN (1, 0.121) kpsi. The corresponding z variable is
z =−\frac {ln\left(\frac {56}{26.04} \sqrt {\frac {1 + 0.121^{2}}{1 +0.077^{2}}}\right)}{\sqrt{ln[(1 +0.077^{2})(1 + 0.121^{2})]}}= −5.39
which represents, from Table A–10, a probability of failure of pproximately 0.0^{7}358 [which represents 3.58( 10^{−8})] of first-cycle yield in the fillet.
The probability of observing a fatigue failure exceeds the probability of a yield failure, something a deterministic analysis does not foresee and in fact could lead one to expect a yield failure should a failure occur. Look at the {σ}^{′}_{a}S_{a} interference and the {σ}^{′}_{max}S_{y} interference and examine the z expressions. These control the relative probabilities. A deterministic analysis is oblivious to this and can mislead. Check your statistics text for events that are not mutually exclusive, but are independent, to quantify the probability of failure:
p_{f} = p(yield) + p(fatigue) − p(yield and fatigue)
= p(yield) + p(fatigue) − p(yield)p(fatigue)
= 0.358(10^{−7}) + 0.65(10^{−4}) − 0.358(10^{−7})0.65(10^{−4}) = 0.650(10^{−4})
R = 1 − 0.650(10^{−4}) = 0.999 935
against either or both modes of failure.