Question 1.9: A certain torpedo, moving in fresh water at 10°C, has a mini...

A certain torpedo, moving in fresh water at 10°C, has a minimum-pressure point given by the formula

p_{min} = p_0 - 0.35 ρV^2              (1)

where p_0 = 115 kPa, ρ is the water density, and V is the torpedo velocity. Estimate the velocity at which cavitation bubbles will form on the torpedo. The constant 0.35 is dimensionless.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Assumption: Cavitation bubbles form when the minimum pressure equals the vapor pressure p_{\nu}.

• Approach: Solve Eq. (1) above, which is related to the Bernoulli equation from Example 1.3, for the velocity when p_{min} = p_{\nu}. Use SI units (m, N, kg, s).

• Property values: At 10°C, read Table A.1 for ρ = 1000 kg/m^3 and Table A.5 for p_{\nu} = 1.227 kPa.

Table A.1 Viscosity and Density of Water at 1 atm
T, °C ρ, kg/m^3 µ, N·s/m^2 \nu,  m^2/s T, °F ρ, slug/ft^3 µ, Ib·s/ft^2 \nu,  ft^2/s
0 1000 1.788 E-3 1.788 E-6 32 1.940 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.940 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5
100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5
Table A.5 Surface Tension, Vapor Pressure, and Sound Speed of Water
T, °C Y, N/m p_{\nu}, kPa a, m/s
0 0.0756 0.611 1402
10 0.0742 1.227 1447
20 0.0728 2.337 1482
30 0.0712 4.242 1509
40 0.0696 7.375 1529
50 0.0679 12.34 1542
60 0.0662 19.92 1551
70 0.0644 31.16 1553
80 0.0626 47.35 1554
90 0.0608 70.11 1550
100 0.0589 101.3 1543
120 0.055 198.5 1518
140 0.0509 361.3 1483
160 0.0466 617.8 1440
180 0.0422 1002 1389
200 0.0377 1554 1334
220 0.0331 2318 1268
240 0.0284 3344 1192
260 0.0237 4688 1110
280 0.019 6412 1022
300 0.0144 8581 920
320 0.0099 11,274 800
340 0.0056 14,586 630
360 0.0019 18,651 370
374^* 0.0^* 22,090^* 0^*

^*Critical point.

• Solution steps: Insert the known data into Eq. (1) and solve for the velocity, using SI units:

p_{min} = p_{\nu} = 1227  Pa = 115,000  Pa – 0.35 \left(1000\frac{kg}{m^3}\right)V^2,  with V in m/s

Solve V^2=\frac{(115,000-1227)}{0.35(1000)}=325\frac{m^2}{s^2}  or  V=\sqrt{325} \approx 18.0  m/s                Ans.

• Comments: Note that the use of SI units requires no conversion factors, as discussed in Example 1.3b. Pressures must be entered in pascals, not kilopascals.

Related Answered Questions

Since time does not appear explicitly in Eq. (1), ...