A commercial airplane flies at 540 mi/h at a standard altitude of 30,000 ft. What is its Mach number?
A commercial airplane flies at 540 mi/h at a standard altitude of 30,000 ft. What is its Mach number?
• Approach: Find the “standard” speed of sound; divide it into the velocity, using proper units.
• Property values: From Table A.6, at 30,000 ft (9144 m), a ≈ 303 m/s. Check this against the standard temperature, estimated from the table to be 229 K. From Eq. (1.38) for air,
a_{ideal gas} = (kRT)^{1/2} (1.38)
a = [kR_{air}T]^{1/2} = [1.4(287)(229)]^{1/2} \approx 303 m/s.
Table A.6 Properties of the Standard Atmosphere | ||||
z, m | T, K | p, Pa | ρ, kg/m^3 | a, m/s |
-500 | 291.41 | 107,508 | 1.2854 | 342.2 |
0 | 288.16 | 101,350 | 1.2255 | 340.3 |
500 | 284.91 | 95,480 | 1.1677 | 338.4 |
1000 | 281.66 | 89,889 | 1.1120 | 336.5 |
1500 | 278.41 | 84,565 | 1.0583 | 334.5 |
2000 | 275.16 | 79,500 | 1.0067 | 332.6 |
2500 | 271.91 | 74,684 | 0.9570 | 330.6 |
3000 | 268.66 | 70,107 | 0.9092 | 328.6 |
3500 | 265.41 | 65,759 | 0.8633 | 326.6 |
4000 | 262.16 | 61,633 | 0.8191 | 324.6 |
4500 | 258.91 | 57,718 | 0.7768 | 322.6 |
5000 | 255.66 | 54,008 | 0.7361 | 320.6 |
5500 | 252.41 | 50,493 | 0.6970 | 318.5 |
6000 | 249.16 | 47,166 | 0.6596 | 316.5 |
6500 | 245.91 | 44,018 | 0.6237 | 314.4 |
7000 | 242.66 | 41,043 | 0.5893 | 312.3 |
7500 | 239.41 | 38,233 | 0.5564 | 310.2 |
8000 | 236.16 | 35,581 | 0.5250 | 308.1 |
8500 | 232.91 | 33,080 | 0.4949 | 306.0 |
9000 | 229.66 | 30,723 | 0.4661 | 303.8 |
9500 | 226.41 | 28,504 | 0.4387 | 301.7 |
10,000 | 223.16 | 26,416 | 0.4125 | 299.5 |
10,500 | 219.91 | 24,455 | 0.3875 | 297.3 |
11,000 | 216.66 | 22,612 | 0.3637 | 295.1 |
11,500 | 216.66 | 20,897 | 0.3361 | 295.1 |
12,000 | 216.66 | 19,312 | 0.3106 | 295.1 |
12,500 | 216.66 | 17,847 | 0.2870 | 295.1 |
13,000 | 216.66 | 16,494 | 0.2652 | 295.1 |
13,500 | 216.66 | 15,243 | 0.2451 | 295.1 |
14,000 | 216.66 | 14,087 | 0.2265 | 295.1 |
14,500 | 216.66 | 13,018 | 0.2094 | 295.1 |
15,000 | 216.66 | 12,031 | 0.1935 | 295.1 |
15,500 | 216.66 | 11,118 | 0.1788 | 295.1 |
16,000 | 216.66 | 10,275 | 0.1652 | 295.1 |
16,500 | 216.66 | 9496 | 0.1527 | 295.1 |
17,000 | 216.66 | 8775 | 0.1411 | 295.1 |
17,500 | 216.66 | 8110 | 0.1304 | 295.1 |
18,000 | 216.66 | 7495 | 0.1205 | 295.1 |
18,500 | 216.66 | 6926 | 0.1114 | 295.1 |
19,000 | 216.66 | 6401 | 0.1029 | 295.1 |
19,500 | 216.66 | 5915 | 0.0951 | 295.1 |
20,000 | 216.66 | 5467 | 0.0879 | 295.1 |
22,000 | 218.6 | 4048 | 0.0645 | 296.4 |
24,000 | 220.6 | 2972 | 0.0469 | 297.8 |
26,000 | 222.5 | 2189 | 0.0343 | 299.1 |
28,000 | 224.5 | 1616 | 0.0251 | 300.4 |
30,000 | 226.5 | 1197 | 0.0184 | 301.7 |
40,000 | 250.4 | 287 | 0.0040 | 317.2 |
50,000 | 270.7 | 80 | 0.0010 | 329.9 |
60,000 | 255.7 | 22 | 0.0003 | 320.6 |
70,000 | 219.7 | 6 | 0.0001 | 297.2 |
• Solution steps: Convert the airplane velocity to m/s:
V = (540 mi/h)[0.44704 m/s/(mi/h)] ≈ 241 m/s.
Then the Mach number is given by
Ma = V/a = (241 m/s)/(303 m/s) = 0.80 Ans.
• Comments: This value, Ma = 0.80, is typical of present-day commercial airliners.