A pair of worm gears is designated as,1/30/10/8
Calculate
(i) the centre distance;
(ii) the speed reduction;
(iii) the dimensions of the worm; and
(iv) the dimensions of the worm wheel.
A pair of worm gears is designated as,1/30/10/8
Calculate
(i) the centre distance;
(ii) the speed reduction;
(iii) the dimensions of the worm; and
(iv) the dimensions of the worm wheel.
\text { Given } \quad z_{1}=1 \quad z_{2}=30 \text { teeth } \quad q=10 \quad m=8 mm .
Step I Centre distance
From Eq. (20.9),
a=\frac{1}{2} m\left(q+z_{2}\right) (20.9).
a=\frac{1}{2} m\left(q+z_{2}\right) \frac{1}{2}(8)(10+30)=160 mm (i).
Step II Speed reduction
i=\frac{z_{2}}{z_{1}}=30 . (ii).
Step III Dimensions of worm
d_{1}=a m=10(8)=80 mm (a).
d_{a 1}=m(q+2)=8(10+2)=96 mm (b).
\tan \gamma=\frac{z_{1}}{q}=\frac{1}{10} \quad \text { or } \quad \gamma=5.71^{\circ} .
d_{f 1}=m(q+2-44 \cos \gamma) .
=8[10+2-4.4 \cos (5.71)] .
= 60.9747 mm (c)
p_{x}=\pi m=\pi(8)=25.1327 mm (d).
Step IV Dimensions of worm wheel
d_{2}=m z_{2}=8(30)=240 mm . (a)
d_{a 2}=m\left(z_{2}+4 \cos \gamma-2\right) .
=8[30+4 \cos (5.71)-2] .
= 255.8412 mm (b)
d_{f}=m\left(z_{2}-2-0.4 \cos \gamma\right) .
=8[30-2-0.4 \cos (5.71)] .
= 220.8159 (c).