Question 20.1: A pair of worm gears is designated as,1/30/10/8 Calculate (i...

A pair of worm gears is designated as,1/30/10/8
Calculate
(i) the centre distance;
(ii) the speed reduction;
(iii) the dimensions of the worm; and
(iv) the dimensions of the worm wheel.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \quad z_{1}=1 \quad z_{2}=30 \text { teeth } \quad q=10 \quad m=8 mm .

Step I Centre distance
From Eq. (20.9),

a=\frac{1}{2} m\left(q+z_{2}\right)                 (20.9).

a=\frac{1}{2} m\left(q+z_{2}\right) \frac{1}{2}(8)(10+30)=160 mm        (i).

Step II Speed reduction

i=\frac{z_{2}}{z_{1}}=30 .           (ii).

Step III Dimensions of worm

d_{1}=a m=10(8)=80 mm            (a).

d_{a 1}=m(q+2)=8(10+2)=96 mm              (b).

\tan \gamma=\frac{z_{1}}{q}=\frac{1}{10} \quad \text { or } \quad \gamma=5.71^{\circ} .

d_{f 1}=m(q+2-44 \cos \gamma) .

=8[10+2-4.4 \cos (5.71)] .

= 60.9747 mm               (c)

p_{x}=\pi m=\pi(8)=25.1327 mm                     (d).

Step IV Dimensions of worm wheel

d_{2}=m z_{2}=8(30)=240 mm .            (a)

d_{a 2}=m\left(z_{2}+4 \cos \gamma-2\right) .

=8[30+4 \cos (5.71)-2] .

= 255.8412 mm          (b)

d_{f}=m\left(z_{2}-2-0.4 \cos \gamma\right) .

=8[30-2-0.4 \cos (5.71)] .

= 220.8159                   (c).

Related Answered Questions