Assume the data of Example 20.5 for a pair of worm gears. Determine the power transmitting capacity based on wear strength.
Assume the data of Example 20.5 for a pair of worm gears. Determine the power transmitting capacity based on wear strength.
\text { Given } \quad n_{1}=1200 rpm \quad z_{1}=1 \quad z_{2}=30 \text { teeth } .
q = 10 m = 10 mm
Step I Permissible torque on worm wheel
For the given pair of worm gears,
d_{2}=300 mm .
\text { For }(q=10) \text { and }\left(z_{1}=1\right), \text { the zone factor } Y_{z} \text { from } .
Table 20.4 is given by
Table 20.4 Values of the zone factor Y_{z}
q = 20 | q = 16 | q = 12 | q = 10 | q = 9 | q = 8 | z_{1} |
1.508 | 1.374 | 1.202 | 1.143 | 1.128 | 1.084 | 1 |
1.575 | 1.418 | 1.280 | 1.231 | 1.214 | 1.114 | 2 |
1.798 | 1.634 | 1.515 | 1.460 | 1.380 | 1.204 | 4 |
Y_{z}=1.143 .
For case-hardened carbon steel 14C6 (Table 20.3),
Table 20.3 Values of the Surface Stress Factor S_{c}
Values of S_{c} when running with | Materials | |||
D | C | B | A | |
1.55 | 0.92 | 0.85 | – | A Phosphor-bronze (centrifugally cast) |
1.27 | 0.70 | 0.63 | – | Phosphor-bronze (sand cast and chilled) |
1.06 | 0.54 | 0.47 | – | Phosphor-bronze (sand-cast) |
– | – | – | 1.1 | B 0.4% carbon steel-normalized (40C8) |
– | – | – | 1.55 | C 0.55% carbon steel-normalized (55C8) |
– | – | – | 4.93 | D Case-hardened carbon steel (10C4 , 14C6) |
– | – | – | 5.41 | Case-hardened alloy steel (16Ni80Cr60 ,20Ni2Mo25) |
– | – | – | 6.19 | Nickel–chromium steel ( 13Ni3Cr80 , 15Ni4Cr1 ) |
S_{c 1}=4.93 .
For centrifugally cast phosphor-bronze,
S_{c 2}=1.55 .
From Eq. (20.33),
V_{s}=\frac{\pi d_{1} n_{1}}{60000 \cos \gamma} (20.33).
V_{s}=\frac{\pi d_{1} n_{1}}{60000 \cos \gamma}=\frac{\pi(10 \times 10)(1200)}{60000 \cos (5.71)}=6.315 m / s .
\text { For } V_{s}=6.315 m / s \text { and } n_{1}=1200 rpm(Fig. 20.15),
X_{c 1}=0.112 .
\text { For } V_{s}=6.315 m / s \quad \text { and } \quad n_{1}=40 rpm .
X_{c 2}=0.26 .
From Eqs (20.38) and (20.39),
\left(M_{t}\right)_{3}=18.64 X_{c 1} S_{c 1} Y _{ z }\left(d_{2}\right)^{1.8} m (20.38).
\left(M_{t}\right)_{4}=18.64 X_{c 2} S_{c 2} Y _{ z }\left(d_{2}\right)^{1.8} m (20.39).
\left(M_{t}\right)_{3}=18.64 X_{c 1} S_{c 1} Y_{z}\left(d_{2}\right)^{1.8} m=18.64(0.112)(4.93)(1.143)(300)^{1.8}(10) .
= 3 383 570.4 N-mm (a)
\left(M_{t}\right)_{4}=18.64 X_{c 2} S_{c 2} Y _{ z }\left(d_{2}\right)^{1.8} m =18.64(0.26)(1.55)(1.143)(300)^{1.8}(10)= 2 469 535.8 N-mm (b)
The lower value of torque on worm wheel is 2 469 535.8 N-mm.
Step II Power transmitting capacity based on wear strength
kW =\frac{2 \pi n_{2}\left(M_{t}\right)}{60 \times 10^{6}}=\frac{2 \pi(40)(2469535.8)}{60 \times 10^{6}}=10.34 .