Question 20.6: Assume the data of Example 20.5 for a pair of worm gears. De...

Assume the data of Example 20.5 for a pair of worm gears. Determine the power transmitting capacity based on wear strength.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \quad n_{1}=1200 rpm \quad z_{1}=1 \quad z_{2}=30 \text { teeth } .

q = 10 m = 10 mm
Step I Permissible torque on worm wheel
For the given pair of worm gears,

d_{2}=300 mm .

\text { For }(q=10) \text { and }\left(z_{1}=1\right), \text { the zone factor } Y_{z} \text { from } .

Table 20.4 is given by

Table 20.4 Values of the zone factor Y_{z}

q = 20 q = 16 q = 12 q = 10 q = 9 q = 8 z_{1}
1.508 1.374 1.202 1.143 1.128 1.084 1
1.575 1.418 1.280 1.231 1.214 1.114 2
1.798 1.634 1.515 1.460 1.380 1.204 4

Y_{z}=1.143 .

For case-hardened carbon steel 14C6 (Table 20.3),

Table 20.3 Values of the Surface Stress Factor S_{c}

Values of S_{c} when running with Materials
D C B A
1.55 0.92 0.85 A Phosphor-bronze (centrifugally cast)
1.27 0.70 0.63 Phosphor-bronze
(sand cast and chilled)
1.06 0.54 0.47 Phosphor-bronze (sand-cast)
1.1 B 0.4% carbon steel-normalized (40C8)
1.55 C 0.55% carbon steel-normalized (55C8)
4.93 D Case-hardened carbon steel
(10C4 , 14C6)
5.41 Case-hardened alloy steel
(16Ni80Cr60 ,20Ni2Mo25)
6.19 Nickel–chromium steel
( 13Ni3Cr80 , 15Ni4Cr1 )

S_{c 1}=4.93 .

For centrifugally cast phosphor-bronze,

S_{c 2}=1.55 .

From Eq. (20.33),

V_{s}=\frac{\pi d_{1} n_{1}}{60000 \cos \gamma}             (20.33).

V_{s}=\frac{\pi d_{1} n_{1}}{60000 \cos \gamma}=\frac{\pi(10 \times 10)(1200)}{60000 \cos (5.71)}=6.315 m / s .

\text { For } V_{s}=6.315 m / s \text { and } n_{1}=1200 rpm

(Fig. 20.15),

X_{c 1}=0.112 .

\text { For } V_{s}=6.315 m / s \quad \text { and } \quad n_{1}=40 rpm .

X_{c 2}=0.26 .

From Eqs (20.38) and (20.39),

\left(M_{t}\right)_{3}=18.64 X_{c 1} S_{c 1} Y _{ z }\left(d_{2}\right)^{1.8} m                 (20.38).

\left(M_{t}\right)_{4}=18.64 X_{c 2} S_{c 2} Y _{ z }\left(d_{2}\right)^{1.8} m                   (20.39).

\left(M_{t}\right)_{3}=18.64 X_{c 1} S_{c 1} Y_{z}\left(d_{2}\right)^{1.8} m

=18.64(0.112)(4.93)(1.143)(300)^{1.8}(10) .

= 3 383 570.4 N-mm             (a)

\left(M_{t}\right)_{4}=18.64 X_{c 2} S_{c 2} Y _{ z }\left(d_{2}\right)^{1.8} m =18.64(0.26)(1.55)(1.143)(300)^{1.8}(10)

= 2 469 535.8 N-mm                (b)
The lower value of torque on worm wheel is 2 469 535.8 N-mm.
Step II Power transmitting capacity based on wear strength

kW =\frac{2 \pi n_{2}\left(M_{t}\right)}{60 \times 10^{6}}=\frac{2 \pi(40)(2469535.8)}{60 \times 10^{6}}=10.34 .

20.15

Related Answered Questions