Question 2.2: If sea-level pressure is 101,350 Pa, compute the standard pr...

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, using (a) the exact formula and (b) an isothermal assumption at a standard sea-level temperature of 15°C. Is the isothermal approximation adequate?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Part (a)

Use absolute temperature in the exact formula, Eq. (2.20):

p=p_a\left(1-\frac{Bz}{T_0}\right)^{g/(RB)}                 where                  \frac{g}{RB}=5.26(air)

 

\rho=\rho_0\left(1-\frac{Bz}{T_0}\right)^{\frac{g}{RB}-1}                     where                   \rho_0=1.2255\frac{kg}{m^3},   p_0=101,350  Pa                 (2.20)

p=p_a\left[1-\frac{(0.00650  K/m)(5000  m)}{288.16  K}\right]^{5.26}=(101,350  Pa)(0.8872)^{5.26}=101,350(0.5328)=54,000  Pa

This is the standard-pressure result given at z = 5000 m in Table A.6.

Table A.6 Properties of the Standard Atmosphere
z, m T, K p, Pa ρ, kg/m^3 a, m/s
-500 291.41 107,508 1.2854 342.2
0 288.16 101,350 1.2255 340.3
500 284.91 95,480 1.1677 338.4
1000 281.66 89,889 1.1120 336.5
1500 278.41 84,565 1.0583 334.5
2000 275.16 79,500 1.0067 332.6
2500 271.91 74,684 0.9570 330.6
3000 268.66 70,107 0.9092 328.6
3500 265.41 65,759 0.8633 326.6
4000 262.16 61,633 0.8191 324.6
4500 258.91 57,718 0.7768 322.6
5000 255.66 54,008 0.7361 320.6
5500 252.41 50,493 0.6970 318.5
6000 249.16 47,166 0.6596 316.5
6500 245.91 44,018 0.6237 314.4
7000 242.66 41,043 0.5893 312.3
7500 239.41 38,233 0.5564 310.2
8000 236.16 35,581 0.5250 308.1
8500 232.91 33,080 0.4949 306.0
9000 229.66 30,723 0.4661 303.8
9500 226.41 28,504 0.4387 301.7
10,000 223.16 26,416 0.4125 299.5
10,500 219.91 24,455 0.3875 297.3
11,000 216.66 22,612 0.3637 295.1
11,500 216.66 20,897 0.3361 295.1
12,000 216.66 19,312 0.3106 295.1
12,500 216.66 17,847 0.2870 295.1
13,000 216.66 16,494 0.2652 295.1
13,500 216.66 15,243 0.2451 295.1
14,000 216.66 14,087 0.2265 295.1
14,500 216.66 13,018 0.2094 295.1
15,000 216.66 12,031 0.1935 295.1
15,500 216.66 11,118 0.1788 295.1
16,000 216.66 10,275 0.1652 295.1
16,500 216.66 9496 0.1527 295.1
17,000 216.66 8775 0.1411 295.1
17,500 216.66 8110 0.1304 295.1
18,000 216.66 7495 0.1205 295.1
18,500 216.66 6926 0.1114 295.1
19,000 216.66 6401 0.1029 295.1
19,500 216.66 5915 0.0951 295.1
20,000 216.66 5467 0.0879 295.1
22,000 218.6 4048 0.0645 296.4
24,000 220.6 2972 0.0469 297.8
26,000 222.5 2189 0.0343 299.1
28,000 224.5 1616 0.0251 300.4
30,000 226.5 1197 0.0184 301.7
40,000 250.4 287 0.0040 317.2
50,000 270.7 80 0.0010 329.9
60,000 255.7 22 0.0003 320.6
70,000 219.7 6 0.0001 297.2

Part (b)

If the atmosphere were isothermal at 288.16 K, Eq. (2.18) would apply:

p_2=p_1  \exp \left[-\frac{g(z_2-z_1)}{RT_0}\right]                (2.18)

p \approx p_a \exp \left(-\frac{gz}{RT}\right) = (101,350  Pa) \exp \left\{-\frac{(9.807  m/s^2)(5000  m)}{[287  m^2/(s^2 \cdot K)](288.16  K)}\right\} = (101,350  Pa) \exp (-0.5929) \approx 56,000  Pa

This is 4 percent higher than the exact result. The isothermal formula is inaccurate in the troposphere.

Related Answered Questions