\text { Given } \quad W=5 kN \quad h=20 m \quad \alpha=1 m / s ^{2} .
For wire rope, construction = 6 × 19
d_{r}=10 mm \quad \text { tensile designation }=1570 \quad(f s)=10 .
Let us assume that the number of wire ropes is z. The force acting on each wire rope comprises the following factors:
(i) the weight of the material to be raised;
(ii) the weight of the wire rope; and
(iii) the force due to acceleration of the material and the wire rope.
Step I Weight of the material
The weight of the material raised by each wire rope is given by,
\left(\frac{5000}{z}\right) N (i).
Step II Weight of the wire rope
From Table 23.4, the mass of 100 m long wire rope is 34.6 kg. Since the height is 20 m, the weight of the wire is given by,
Table 23.4 Breaking load and mass for 6 × 19 (12/6/1) construction wire ropes with fibre core
Minimum breaking load corresponding to tensile designation of (kN) |
Approximate mass
(kg/100 m) |
Nominal
diameter \left(d_{r}\right)
(mm) |
1960 |
1770 |
1570 |
Steel
core |
Fibre
core |
Steel
core |
Fibre
core |
Steel
core |
Fibre
core |
Steel
core |
Fibre
core |
41.6 |
39 |
37.6 |
35 |
33 |
31 |
24.3 |
22.1 |
8 |
52.6 |
49 |
47.5 |
44 |
42 |
39 |
30.8 |
28.0 |
9 |
65 |
60 |
58.7 |
54 |
52 |
48 |
38.0 |
34.6 |
10 |
70.7 |
73 |
71.0 |
66 |
63 |
58 |
46 |
41.9 |
11 |
93.6 |
87 |
84.6 |
78 |
75 |
69 |
54 |
49.8 |
12 |
110 |
102 |
99 |
92 |
88 |
82 |
64.3 |
58.5 |
13 |
127 |
118 |
115 |
107 |
102 |
95 |
74.5 |
67.8 |
14 |
166 |
154 |
150 |
139 |
133 |
124 |
97.4 |
88.6 |
16 |
210 |
195 |
190 |
176 |
160 |
156 |
123.0 |
112 |
18 |
234 |
217 |
212 |
196 |
188 |
174 |
137 |
125 |
19 |
260 |
241 |
235 |
218 |
208 |
193 |
152.0 |
138 |
20 |
314 |
292 |
204 |
263 |
252 |
234 |
184.0 |
167 |
22 |
375 |
347 |
338 |
318 |
300 |
278 |
219.0 |
199 |
24 |
439 |
407 |
397 |
368 |
352 |
326 |
257 |
234 |
26 |
34.6\left(\frac{20}{100}\right)(9.81) \text { or } 67.89 N (ii).
Step III Force due to acceleration
The mass of the material raised by each wire rope is \left[\left(\frac{5000}{9.81}\right)\left(\frac{1}{z}\right)\right] and that of each wire rope is \left[34.6\left(\frac{20}{100}\right)\right] . The force due to acceleration (i.e., mass × acceleration) is given by,
\left[\left(\frac{5000}{9.81}\right)\left(\frac{1}{z}\right)+34.6\left(\frac{20}{100}\right)\right](1) .
or \left[\frac{509.68}{z}+6.92\right] N .
Step IV Number of wire ropes
From Table 23.4, the breaking strength of the wire rope is 48 kN. Assuming the factor of safety to be 10,
\frac{48000}{10}=\frac{5000}{z}+67.89+\left[\frac{509.68}{z}+6.92\right] .
or z = 1.166 or 2 wire ropes.