Assume the data of Example 23.1 and determine the true factor of safety taking into account the bending stresses. The sheave diameter can be taken as \left(45 d_{v}\right) .
Assume the data of Example 23.1 and determine the true factor of safety taking into account the bending stresses. The sheave diameter can be taken as \left(45 d_{v}\right) .
\text { Given } D=45 d_{r} .
Step I Bending load
From Eq. 23.3 and Table 23.7,
Table 23.3 Breaking load and mass for 6 × 7 (6/1) construction wire ropes
Minimum breaking load corresponding to tensile designation of wires of (kN) |
Approximate mass (kg/100 m) |
Nominal diameter \left(d_{r}\right) (mm) |
||||||
1960 | 1770 | 1570 | ||||||
Steel core |
Fibre core |
Steel core |
Fibre core |
Steel core |
Fibre core |
Steel core |
Fibre core |
|
45 | 42 | 41 | 38 | 36 | 33 | 25.2 | 22.9 | 8 |
57 | 53 | 51 | 48 | 46 | 42 | 31.8 | 28.9 | 9 |
70 | 65 | 64 | 59 | 56 | 52 | 39.1 | 35.7 | 10 |
85 | 79 | 77 | 71 | 68 | 63 | 47.6 | 43.2 | 11 |
101 | 94 | 91 | 85 | 81 | 75 | 56.6 | 51.5 | 12 |
Table 23.7 Wire-rope data
Sheave diameter (D) (mm) | Metallic area of rope (A) (mm²) |
Diameter of wire \left(d_{w}\right) (mm) |
Modulus of elasticity of rope \left(E_{r}\right) (N/mm²) |
Type of Construction |
|
Recommended | Minimum | ||||
72 d_{r} | 42 d_{r} | 0.38 d_{r}^{2} | 0.106 d_{r} | 97000 | 6 × 7 |
45 d_{r} | 30 d_{r} | 0.40 d_{r}^{2} | 0.063 d_{r} | 83000 | 6 ×19 |
27d_{r} | 18 d_{r} | 0.40 d_{r}^{2} | 0.045 d_{r} | 76000 | 6 × 37 |
P_{b}=\frac{A E_{r} d_{w}}{D} .
=\frac{\left(0.40 d_{r}^{2}\right)(83000)\left(0.063 d_{r}\right)}{\left(45 d_{r}\right)} .
=46.48 d_{r}^{2}=46.48(10)^{2}=4648 N .
Step II Total load on wire rope
The total force acting on the wire rope consists of three factors discussed in the previous example, plus the bending load. The total force is given by,
\left[\frac{5000}{2}+67.89+\frac{509.68}{2}+6.92\right]+4648 \text { or } 7477.65 N .
Step III Factor of safety
(f s)=\frac{48000}{7477.65}=6.42 .