Question 2.5.3: A plane wave with η=√jwµ/σ=√wµ/σ e^jπ/4=√wπ/2σ+j√wµ/2σ is in...

A plane wave with \eta=\sqrt{\frac{j w \mu}{\sigma}}=\sqrt{\frac{w \mu}{\sigma}} e^{j \pi / 4}=\sqrt{\frac{w \pi}{2 \sigma}}+j \sqrt{\frac{w \mu}{2 \sigma}} is incident normally on a thick plane conductor lying in the X-Y plane. Its conductivity is 6 \times 10^{6} S/m and surface impedance is 5 \times 10^{-4} \angle 45^{\circ} \Omega. Determine the propagation • constant and the skin depth in the conductor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given,  E_{y}=10 e^{j(\omega t-\beta z)} for good conductor, σ >> ωE

\begin{aligned}&Z_{s}=\sqrt{\frac{j \omega \mu}{\nu +j \omega E}} \cong \sqrt{\frac{j \omega \mu}{\sigma}}=R_{s}+j x s \\&R_{s}=5 \times 10^{-4} \angle 45^{\circ} \\&R_{s}=x_{s}=\sqrt{\frac{\omega / 4}{2 \sigma}}=\frac{5 \times 10^{-4}}{\sqrt{2}}\end{aligned}

Propagation constant,

\begin{aligned}&\alpha=\frac{\sqrt{j \omega \sigma}}{2} \beta=\left(R_{s}\right) \sigma=\frac{5 \times 10^{-4}}{\sqrt{2}} \times 6 \times 10^{6} \\&\Rightarrow \alpha=\beta=2|2| \\&\gamma=\alpha+ J \beta=2|2|+ j 2|2|\end{aligned}

Skin depth,  d=\frac{1}{\alpha}=\frac{1}{2|2|}=0.471 mm,

Related Answered Questions