Question 9.5: The 1018 steel strap of Fig. 9–21 has a 1000-lbf, completely...

The 1018 steel strap of Fig. 9–21 has a 1000-lbf, completely reversed load applied.
Determine the factor of safety of the weldment for infinite life.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table A–20 for the 1018 attachment metal the strengths are S_{ut} = 58 kpsi and S_{y} = 32 kpsi. For the E6010 electrode, S_{ut} = 62 kpsi and S_{y}= 50 kpsi. The fatigue stress-concentration factor, from Table 9–5, is K_{fs} = 2.7. From Table 6–2, p. 280, k_{a}= 39.9(58)^{−0.995} = 0.702 . The shear area is:

A = 2(0.707)0.375(2) = 1.061  in^{2}

Table 9–5   Fatigue Stress-Concentration Factors, K_{fs}

K_{fs} Type of Weld
1.2 Reinforced butt weld
1.5 Toe of transverse fillet weld
2.7 End of parallel fillet weld
2.0 T-butt joint with sharp corners

 

Table 6–2 Parameters for Marin Surface Modification Factor, Eq. (6–19)

k_{a} = aS^{b}_{ut} (6–19)

Exponent b Factor a Surface Finish
S_{ut}, MPa S_{ut}, kpsi
−0.085 1.58 1.34 Ground
−0.265 4.51 2.70 Machined or cold-drawn
−0.718 57.7 14.4 Hot-rolled
−0.995 272. 39.9 As-forged

From C.J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental Stress Analysis, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (ed.) Metals Engineering Design ASME Handbook, McGraw-Hill, New York. Copyright © 1953 by The McGraw-Hill Companies, Inc. Reprinted by permission.
Table A–20 Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm ( \frac {3}{4} to 1\frac {1}{4}in). These strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] Source: 1986 SAE Handbook, p. 2.15

8

Brinell Hardness

7

Reduction in Area, %

6

Elongation in 2 in, %

5

Yield Strength, MPa (kpsi)

4

Tensile Strength, MPa (kpsi)

3

Proces-sing

2

SAE and/or AISI No.

1

UNS No.

86 55 30 170 (24) 300 (43) HR 1006 G10060
95 45 20 280 (41) 330 (48) CD
95 50 28 180 (26) 320 (47) HR 1010 G10100
105 40 20 300 (44) 370 (53) CD
101 50 28 190 (27.5) 340 (50) HR 1015 G10150
111 40 18 320 (47) 390 (56) CD
116 50 25 220 (32) 400 (58) HR 1018 G10180
126 40 15 370 (54) 440 (64) CD
111 50 25 210 (30) 380 (55) HR 1020 G10200
131 40 15 390 (57) 470 (68) CD
137 42 20 260 (37.5) 470 (68) HR 1030 G10300
149 35 12 440 (64) 520 (76) CD
143 40 18 270 (39.5) 500 (72) HR 1035 G10350
163 35 12 460 (67) 550 (80) CD
149 40 18 290 (42) 520 (76) HR 1040 G10400
170 35 12 490 (71) 590 (85) CD
163 40 16 310 (45) 570 (82) HR 1045 G10450
179 35 12 530 (77) 630 (91) CD
179 35 15 340 (49.5) 620 (90) HR 1050 G10500
197 30 10 580 (84) 690 (100) CD
201 30 12 370 (54) 680 (98) HR 1060 G10600
229 25 10 420 (61.5) 770 (112) HR 1080 G10800
248 25 10 460 (66) 830 (120) HR 1095 G10950

 

For a uniform shear stress on the throat, k_{b} = 1.

From Eq. (6–26), p. 282, for torsion (shear),

k_{c} =\begin{cases} 1 & bending \\ 0.85 & axial \\ 0.59 & torsion ^{17} \end{cases}    (6-26)


17: Use this only for pure torsional fatigue loading. When torsion is  combined with other stresses, such as bending, k_{c} = 1 and the combined loading is managed by using the effective von Mises stress as in Sec. 5–5. Note: For pure torsion, the distortion energy predicts that (k_{c})_{torsion} = 0.577.


k_{c} = 0.59            k_{d} = k_{e} = k_{f} = 1

From Eqs. (6–8), p. 274, and (6–18), p. 279,

S′_{e}=\begin{cases}0.5S_{ut}& S_{ut} ≤ 200  kpsi (1400 MPa) \\100  kpsi & S_{ut} > 200  kpsi \\700  MPa &   S_{ut} > 1400  MPa \end{cases}      (6-8)

S_{e} = k_{a}k_{b}k_{c}k_{d}k_{e}k_{f} S′_{e}              (6–18)

S_{se} = 0.702(1)0.59(1)(1)(1)0.5(58) = 12.0  kpsi
K_{f s} = 2.7      F_{a} = 1000  lbf        F_{m} = 0

Only primary shear is present:

τ^{′}_{a} =\frac {K_{f s} F_{a}}{A} = \frac {2.7(1000)}{1.061} =2545  psi          τ^{′}_{m} = 0  psi

In the absence of a midrange component, the fatigue factor of safety n_{f} is given by

n_{f} =\frac {S_{se}}{τ^{′}_{a}} =\frac {12 000}{2545} = 4.72

 

 

 

Related Answered Questions