The 1018 steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf (F_{a} = F_{m} = 1000 lbf). Determine the fatigue factor of safety fatigue strength of the weldment.
The 1018 steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf (F_{a} = F_{m} = 1000 lbf). Determine the fatigue factor of safety fatigue strength of the weldment.
From Table 6–2, p. 280, k_{a} = 39.9(58)^{−0.995} = 0.702.
Table 6–2 Parameters for Marin Surface Modification Factor, Eq. (6–19)
k_{a} = aS^{b}_{ut} (6–19)
Exponent b | Factor a | Surface Finish | |
S_{ut}, MPa | S_{ut}, kpsi | ||
−0.085 | 1.58 | 1.34 | Ground |
−0.265 | 4.51 | 2.70 | Machined or cold-drawn |
−0.718 | 57.7 | 14.4 | Hot-rolled |
−0.995 | 272. | 39.9 | As-forged |
S′_{e}=\begin{cases}0.5S_{ut}& S_{ut} ≤ 200 kpsi (1400 MPa) \\100 kpsi & S_{ut} > 200 kpsi \\700 MPa & S_{ut} > 1400 MPa \end{cases} (6-8)
Table 9–5 Fatigue Stress-Concentration Factors, K_{fs}
K_{fs} | Type of Weld |
1.2 | Reinforced butt weld |
1.5 | Toe of transverse fillet weld |
2.7 | End of parallel fillet weld |
2.0 | T-butt joint with sharp corners |
τ^{′}_{a} = τ^{′}_{m} =\frac {K_{f s} F_{a}}{A} =\frac {2(1000)}{1.061} = 1885 psi
From Eq. (6–54), p. 309, S_{su} \dot{=}0.67S_{ut} . This, together with the Gerber fatigue failure criterion for shear stresses from Table 6–7, p. 299, gives
S_{su} = 0.67S_{ut} (6–54)
n_{f} =\frac {1}{2} \left(\frac {0.67S_{ut}}{τ_{m}} \right)^{2} \frac {τ_{a}}{S_{se}} \left[ -1+ \sqrt{ 1+ \left(\frac {2τ_{m} S_{se}}{0.67S_{ut} τ_{a}} \right)^{2} } \right]
n_{f} =\frac {1}{2} \left(\frac {0.67(58)}{1.885} \right)^{2} \frac {1.885}{12.0} \left[ -1+ \sqrt{ 1+ \left(\frac {2(1.885) 12.0}{0.67(58) 1.885} \right)^{2} } \right]= 5.85
Table 6–7 Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria
Intersection Coordinates | Intersecting Equations |
S_{a} =\frac {r^{2}S^{2}_{ut}}{2S_{e}} \left[-1+\sqrt{1+(\frac {2S_{e}}{r S_{ut}})^{2})} \right]
S_{m} =\frac {S_{a}}{r} |
\frac {S_{a}}{S_{e}} +(\frac {S_{m}}{S_{ut}})^{2}= 1
Load line r =\frac {S_{a}}{S_{m}} |
S_{a} =\frac {r S_{y}}{1 + r}
S_{m} =\frac {S_{y}}{1 + r} |
\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}}= 1
Load line r =\frac {S_{a}}{S_{m}} |
S_{m} =\frac {S^{2}_{ut}}{2S_{e}} \left[ 1- \sqrt{1+ \left( \frac {2S_{e}}{S_{ut}} \right)^{2} \left( 1 −\frac {S_{y}}{S_{e}} \right)} \right]
S_{a} = S_{y} − S_{m}, r_{crit} = S_{a}/S_{m} |
\frac {S_{a}}{S_{e}} +(\frac {S_{m}}{S_{ut}})^{2}= 1
\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}}= 1 |
Fatigue factor of safety
n_{f} =\frac {1}{2} \left[\frac {S_{ut}}{σ_{m}} \right)^{2} \frac {σ_{a}}{S_{e}} \left[ -1+ \sqrt{ 1+ \left(\frac {2σ{m} S_{e}}{S_{ut} σ_{a}} \right)^{2} } \right] σ_{m} > 0 |