Question 9.6: The 1018 steel strap of Fig. 9–22 has a repeatedly applied l...

The 1018 steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf (F_{a} = F_{m} = 1000 lbf). Determine the fatigue factor of safety fatigue strength of the weldment.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table 6–2, p. 280, k_{a} = 39.9(58)^{−0.995} = 0.702.

Table 6–2 Parameters for Marin Surface Modification Factor, Eq. (6–19)

k_{a} = aS^{b}_{ut}       (6–19)

Exponent b Factor a Surface Finish
S_{ut}, MPa S_{ut}, kpsi
−0.085 1.58 1.34 Ground
−0.265 4.51 2.70 Machined or cold-drawn
−0.718 57.7 14.4 Hot-rolled
−0.995 272. 39.9 As-forged
From C.J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental Stress Analysis, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (ed.) Metals Engineering Design ASME Handbook, McGraw-Hill, New York. Copyright © 1953 by The McGraw-Hill Companies, Inc. Reprinted by permission.
A = 2(0.707)0.375(2) = 1.061 in^{2}
For uniform shear stress on the throat k_{b} = 1.
From Eq. (6–26), p. 282, k_{c} = 0.59. From Eqs. (6–8), p. 274, and (6–18), p. 279,
k_{c} =\begin{cases} 1 & bending \\ 0.85 & axial \\ 0.59 & torsion \end{cases}    (6-26)

S′_{e}=\begin{cases}0.5S_{ut}& S_{ut} ≤ 200  kpsi (1400 MPa) \\100  kpsi & S_{ut} > 200  kpsi \\700  MPa &   S_{ut} > 1400  MPa \end{cases}      (6-8)

S_{e} = k_{a}k_{b}k_{c}k_{d}k_{e}k_{f} S′_{e}              (6–18)
S_{se} = 0.702(1)0.59(1)(1)(1)0.5(58) = 12.0  kpsi
From Table 9–5, K_{f s} = 2. Only primary shear is
present:

Table 9–5 Fatigue Stress-Concentration Factors, K_{fs}

K_{fs} Type of Weld
1.2 Reinforced butt weld
1.5 Toe of transverse fillet weld
2.7 End of parallel fillet weld
2.0 T-butt joint with sharp corners

 

τ^{′}_{a} = τ^{′}_{m} =\frac {K_{f s} F_{a}}{A} =\frac {2(1000)}{1.061} = 1885  psi

From Eq. (6–54), p. 309, S_{su} \dot{=}0.67S_{ut} . This, together with the Gerber fatigue failure criterion for shear stresses from Table 6–7, p. 299, gives

S_{su} = 0.67S_{ut}           (6–54)

n_{f} =\frac {1}{2} \left(\frac {0.67S_{ut}}{τ_{m}}  \right)^{2} \frac {τ_{a}}{S_{se}} \left[  -1+ \sqrt{  1+ \left(\frac {2τ_{m} S_{se}}{0.67S_{ut} τ_{a}} \right)^{2}  }  \right]

n_{f} =\frac {1}{2} \left(\frac {0.67(58)}{1.885}  \right)^{2} \frac {1.885}{12.0} \left[  -1+ \sqrt{  1+ \left(\frac {2(1.885) 12.0}{0.67(58) 1.885} \right)^{2}  }  \right]= 5.85

Table 6–7  Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria

Intersection Coordinates Intersecting Equations
S_{a} =\frac {r^{2}S^{2}_{ut}}{2S_{e}} \left[-1+\sqrt{1+(\frac {2S_{e}}{r S_{ut}})^{2})} \right]

S_{m} =\frac {S_{a}}{r}

\frac {S_{a}}{S_{e}} +(\frac {S_{m}}{S_{ut}})^{2}= 1

Load line r =\frac {S_{a}}{S_{m}}

S_{a} =\frac {r S_{y}}{1 + r}

S_{m} =\frac {S_{y}}{1 + r}

\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}}= 1

Load line r =\frac {S_{a}}{S_{m}}

S_{m} =\frac {S^{2}_{ut}}{2S_{e}} \left[ 1- \sqrt{1+ \left( \frac {2S_{e}}{S_{ut}} \right)^{2}  \left( 1 −\frac {S_{y}}{S_{e}}  \right)}   \right]

S_{a} = S_{y} − S_{m}, r_{crit} = S_{a}/S_{m}

\frac {S_{a}}{S_{e}} +(\frac {S_{m}}{S_{ut}})^{2}= 1

\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}}= 1

Fatigue factor of safety

n_{f} =\frac {1}{2} \left[\frac {S_{ut}}{σ_{m}}  \right)^{2} \frac {σ_{a}}{S_{e}} \left[  -1+ \sqrt{  1+ \left(\frac {2σ{m} S_{e}}{S_{ut} σ_{a}} \right)^{2}  }  \right]             σ_{m} > 0  

 

 

Related Answered Questions