(a) A measurement of the energy yields E_{n}= 〈\phi _{n}|\hat {H}|\phi _{n}〉=n^{2}\varepsilon _{0}, that is
E_{1}=\varepsilon _{0}, E_{2}=4\varepsilon _{0}, E_{3}=9\varepsilon _{0}, E_{4}=16\varepsilon _{0} (3.167)
Since |\psi _{0}〉 is normalized, 〈\psi _{0}|\psi _{0}〉= (2+3+1+1)/7=1, and using (3.2),
P_{n}(a_{n} )=\frac{\left|〈\psi _{n}|\psi〉\right| ^{2} }{〈\psi|\psi〉} =\frac{\left|a_{n}\right| ^{2}}{〈\psi|\psi〉} ,
we can write the probabilities corresponding to (3.167) as P (E_{n})= \left|〈\phi _{n}|\psi _{0}〉\right| ^{2}/〈\psi _{0}|\psi _{0}〉=\left|〈\phi _{n}|\psi _{0}〉\right| ^{2}; hence,
using the fact that 〈\phi _{n}|\phi _{m}〉=\delta _{nm}, we have
P(E_{1})= \left|\sqrt{\frac{2}{7}}〈\phi _{1}|\phi _{1}〉 \right| ^{2}=\frac{2}{7}, P(E_{2})= \left|\sqrt{\frac{3}{7}}〈\phi _{2}|\phi _{2}〉 \right| ^{2}=\frac{3}{7}, (3.168)
P(E_{3})= \left|\frac{1}{\sqrt{7} } 〈\phi _{3}|\phi _{3}〉 \right| ^{2}=\frac{1}{7}, P(E_{4})= \left|\frac{1}{\sqrt{7} } 〈\phi _{4}|\phi _{4}〉 \right| ^{2}=\frac{1}{7}. (3.169)
(b) Similarly, a measurement of the observable \hat{A} yields a_{n}= 〈\phi _{n}|\hat{A}|\phi _{n}〉=(n+1)a_{0} ; that is,
a_{1}=2a_{0}, a_{2}=3a_{0}, a_{3}=4a_{0}, a_{4}=5a_{0}. (3.170)
Again, using (3.2) and since |\psi _{0}〉 is normalized, we can ascertain that the probabilities corresponding to the values (3.170) are given by P(a_{n})= \left|〈\phi _{n}|\psi _{0}〉\right| ^{2}/〈\psi _{0}|\psi _{0}〉=\left|〈\phi _{n}|\psi _{0}〉\right| ^{2} , or
P(a_{1})= \left|\sqrt{\frac{2}{7}}〈\phi _{1}|\phi _{1}〉 \right| ^{2}=\frac{2}{7}, P(a_{2})= \left|\sqrt{\frac{3}{7}}〈\phi _{2}|\phi _{2}〉 \right| ^{2}=\frac{3}{7}, (3.171)
P(a_{3})= \left|\frac{1}{\sqrt{7} } 〈\phi _{3}|\phi _{3}〉 \right| ^{2}=\frac{1}{7}, P(a_{4})= \left|\frac{1}{\sqrt{7} } 〈\phi _{4}|\phi _{4}〉 \right| ^{2}=\frac{1}{7}. (3.172)
(c) An energy measurement that yields 4\varepsilon _{0} implies that the system is left in the state |\psi _{2}〉.
A measurement of the observable A immediately afterwards leads to
〈\phi _{2}|\hat{A}|\phi _{2}〉=3a_{0}〈\phi _{2}|\phi _{2}〉=3a_{0}. (3.173)