Question 3.P.6: Consider a physical system whose Hamiltonian H and initial s...

Consider a physical system whose Hamiltonian H and initial state |\psi _{0}〉 are given by

H=\varepsilon \left(\begin{matrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right),       |\psi _{0}〉=\frac{1}{\sqrt{5}}\left(\begin{matrix} 1-i \\ 1-i \\ 1 \end{matrix} \right),

where ε has the dimensions of energy.

(a) What values will we obtain when measuring the energy and with what probabilities?

(b) Calculate 〈\hat{H}〉, the expectation value of the Hamiltonian.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The results of the energy measurement are given by the eigenvalues of H. A diagonalization of H yields a nondegenerate eigenenergy E_{1}=\varepsilon and a doubly degenerate value E_{2} =E_{3}=-\varepsilon whose respective eigenvectors are given by

|\phi _{1}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 1 \\ -i \\ 0 \end{matrix} \right),      |\phi _{2}〉=\frac{1}{\sqrt{2}} \left(\begin{matrix} -i \\ 1 \\ 0 \end{matrix} \right),        |\phi _{3}〉=\left(\begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right);        (3.177)

these eigenvectors are orthogonal since H is Hermitian. Note that the initial state |\psi _{0}〉 can be written in terms of |\phi _{1}〉,|\phi _{2}〉, and |\phi _{3}〉 as follows:

|\psi _{0}〉=\frac{1}{\sqrt{5}}\left(\begin{matrix} 1-i \\ 1-i \\ 1 \end{matrix} \right)=\sqrt{\frac{2}{5}}|\phi _{1}〉+\sqrt {\frac{2}{5}}|\phi _{2}〉+\frac{1}{\sqrt{5}}|\phi _{3}〉.                   (3.178)

Since |\phi _{1}〉,|\phi _{2}〉, and |\phi _{3}〉 are orthonormal, the probability of measuring E_{1}= \varepsilon is given by

P_{1}(E_{1})=\left|〈\phi _{1}|\psi _{0}〉\right| ^{2}=\left |\sqrt{\frac{2}{5}}〈\phi _{1}|\phi _{1}〉\right| ^{2}=\frac{2}{5} .                 (3.179)

Now, since the other eigenvalue is doubly degenerate, E_{2} =E_{3}=-\varepsilon, the probability of measuring -ε can be obtained from (3.3):

P_{2}(E_{2})=\left|〈\phi _{2}|\psi _{0}〉\right| ^{2}=\left|〈\phi _{3}|\psi _{0}〉\right| ^{2}=\frac{2}{5}+\frac{1}{5}=\frac{3}{5}.                      (3.180)

(b) From (3.179) and (3.180), we have

〈\hat{H}〉=P_{1}E_{1}+P_{2}E_{2}=\frac{2}{5}\varepsilon -\frac{3}{5}\varepsilon =-\frac{1}{5}\varepsilon.                (3.181)

We can obtain the same result by calculating the expectation value of \hat{H} with respect to |\psi _{0}〉.

Since 〈\psi _{0}|\psi _{0}〉=1, we have 〈\hat{H}〉=〈\psi _{0}|\hat{H}|\psi _{0}〉/〈\psi _{0}|\psi _{0}〉=〈\psi _{0}|\hat {H}|\psi _{0}〉:

〈\hat{H}〉=〈\psi _{0}|\hat{H}|\psi _{0}〉=\frac{\varepsilon }{5}\left(\begin{matrix} 1+i & 1+i & 1\end{matrix} \right)\left(\begin {matrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right)\left (\begin{matrix} 1-i \\ 1-i \\ 1 \end{matrix} \right)=-\frac{1}{5} \varepsilon.                  (3.182)

Related Answered Questions