Question 3.P.9: Consider a system whose state and two observables A and B ar...

Consider a system whose state and two observables A and B are given by

|\psi(t)〉=\frac{1}{6}\left(\begin{matrix} 1 \\ 0 \\ 4 \end{matrix} \right),       A=\frac{1}{\sqrt {2}}\left(\begin{matrix} 2 & 0 & 0 \\ 0 & 1 & i \\ 0 & -i & 1 \end{matrix} \right),       B= \left(\begin {matrix} 1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{matrix} \right)

(a)We perform a measurement where A is measured first and then, immediately afterwards,
B is measured. Find the probability of obtaining a value of 0 for A and a value of 1 for B.

(b) Now we measure B first then, immediately afterwards, A. Find the probability of obtaining a value of 1 for B and a value of 0 for A.

(c) Compare the results of (b) and (c). Explain.

(d) Which among the sets of operators \left\{\hat{A}\right\},\left\{\hat{B}\right\} and \left\{\hat{A},\hat{B}\right\} form a complete set of commuting operators (CSCO)?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) A measurement of A yields any of the eigenvalues of A which are given by a_{1}=0 (not degenerate) and a_{2}= a_{3}=2 (doubly degenerate); the respective (normalized) eigenstates are

|a_{1}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ -i \\ 1 \end {matrix} \right),      |a_{2}〉=\frac{1}{\sqrt{2}}\left (\begin {matrix} 0 \\ i \\ 1 \end{matrix} \right),        |a_{3}〉=\left (\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right).                 (3.201)

The probability that a measurement of A yields a_{1}=0 is given by

P(a_{1})=\frac{\left|〈a_{1}|\psi(t)〉\right| ^{2}}{〈\psi(t)| \psi(t)〉} =\frac{36}{17}\left|\frac{1}{\sqrt{2}}\frac{1}{6}\left(\begin {matrix} 0 & i & 1\end{matrix} \right) \left(\begin{matrix} 1 \\ 0 \\ 4 \end{matrix} \right) \right| ^{2}=\frac{8}{17},              (3.202)

where we have used the fact that 〈\psi(t)|\psi(t)〉=\frac{1}{36} \left (\begin{matrix} 1 & 0 & 4\end{matrix} \right) \left (\begin {matrix} 1 \\ 0 \\ 4 \end{matrix} \right)=\frac{17}{36}.

Since the system was initially in the state |\psi(t)〉, after a measurement of A yields a_{1}=0, the system is left, as mentioned in Postulate 3, in the following state:

|\phi〉= |a_{1}〉〈a_{1}|\psi(t)〉=\frac{1}{2}\frac{1}{6}\left (\begin{matrix} 0 \\ -i \\ 1 \end{matrix} \right)\left(\begin{matrix} 0 & i & 1\end{matrix} \right) \left(\begin{matrix} 1 \\ 0 \\ 4 \end {matrix} \right)=\frac{1}{3}\left(\begin{matrix} 0 \\ -i \\ 1 \end {matrix} \right).            (3.203)

As for the measurement of B, we obtain any of the eigenvalues b_{1}=-1,b_{2}=b_{3}=1; their corresponding eigenvectors are

|b_{1}〉=\frac{1}{\sqrt{2} } \left(\begin{matrix} 0 \\ i \\ 1 \end{matrix} \right),       |b_{2}〉=\frac{1}{\sqrt{2} }\left(\begin{matrix} 0 \\ -i \\ 1 \end{matrix} \right),       |b_{3}〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right).                 (3.204)

Since the system is now in the state |\phi〉, the probability of obtaining the (doubly degenerate) value b_{2}=b_{3} =1 for B is

P(b_{2})=\frac{\left|〈b_{2}|\phi〉\right| ^{2}}{〈\phi |\phi〉} +\frac{\left|〈b_{3}|\phi〉\right| ^{2}}{〈\phi|\phi〉}

 

=\frac{1}{2}\left|\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 & i & 1\end{matrix} \right)\left(\begin{matrix} 0 \\ -i \\ 1 \end{matrix} \right) \right| ^{2}+\frac{1}{2}\left|\left(\begin{matrix} 1 & 0 & 0\end{matrix} \right)\left(\begin{matrix} 0 \\ -i \\ 1 \end{matrix} \right) \right| ^{2}

=1.                                                                                                          (3.205)

The reason P(b_{2})=1 is because the new state |\phi〉 is an eigenstate of B; in fact |\phi〉=\sqrt{2}/3 |b_{2}〉.

In sum, when measuring A then B, the probability of finding a value of 0 for A and 1 for B is given by the product of the probabilities (3.202) and (3.205):

P(a_{1},b_{2})=P(a_{1})P(b_{2})=\frac{8}{17}.         (3.206)

(b) Next we measure B first then A. Since the system is in the state |\psi(t)〉 and since the value b_{2}=b_{3} =1 is doubly degenerate, the probability of measuring 1 for B is given by

P^{′}(b_{2})=\frac{\left|〈b_{2}|\psi(t)〉\right| ^{2}}{〈\psi(t)| \psi(t)〉}+\frac{\left|〈b_{3}|\psi(t)〉\right| ^{2}}{〈\psi(t)|\psi(t)〉}

 

=\frac{36}{17}\frac{1}{36} \left[\left|\frac{1}{\sqrt{2}} \left (\begin{matrix} 0 & i & 1\end{matrix} \right)\left(\begin{matrix} 1 \\ 0 \\ 4 \end{matrix} \right) \right| ^{2}+\left|\left(\begin{matrix} 1 & 0 & 0\end{matrix} \right)\left(\begin{matrix} 1 \\ 0 \\ 4 \end{matrix} \right) \right| ^{2}\right]

 

=\frac{9}{17}.                                                                (3.207)

We now proceed to the measurement of A. The state of the system immediately after measuring B (with a value b_{2}=b_{3} =1 ) is given by a projection of |\psi(t)〉 onto |b_{2}〉 and |b_{3}〉

|\chi〉=|b_{2}〉〈b_{2}|\psi(t)〉+|b_{3}〉〈b_{3}|\psi(t)〉

 

=\frac{1}{12}\left(\begin{matrix} 0 \\ -i \\ 1 \end{matrix} \right)\left(\begin{matrix} 0 & i & 1\end{matrix} \right) \left(\begin {matrix} 1 \\ 0 \\ 4 \end{matrix} \right)+\frac{1}{6} \left(\begin {matrix} 1 \\ 0 \\ 0 \end{matrix} \right)\left(\begin{matrix} 1 & 0 & 0\end{matrix} \right) \left(\begin{matrix} 1 \\ 0 \\ 4 \end{matrix} \right)

 

=\frac{1}{6}\left(\begin{matrix} 1 \\ -2i \\ 2i \end{matrix} \right)                                                                                (3.208)

So the probability of finding a value of a_{1}=0 when measuring A is given by

P^{′}(a_{1})=\frac{\left|〈a_{1}|\chi 〉\right| ^{2}}{〈\chi |\chi 〉}=\frac{36}{9}\left|\frac{1}{6\sqrt{2}}\left(\begin{matrix} 0 & i & 1\end{matrix} \right)\left(\begin{matrix} 1 \\ -2i \\ 2i \end{matrix} \right) \right| ^{2}=\frac{8}{9},                                   (3.209)

since 〈\chi |\chi 〉=\frac{9}{36}.

Therefore, when measuring B then A, the probability of finding a value of 1 for B and 0 for A is given by the product of the probabilities (3.207) and (3.209):

P(b_{2},a_{3})=P^{′}(b_{2})P^{′}(a_{1})=\frac{9}{17}\frac{8}{9}=\frac{8}{17}.                                                         (3.210)

(c) The probabilities P(a_{1},b_{2}) and P(b_{2}, a_{1}), as shown in (3.206) and (3.210), are equal. This is expected since A and B do commute. The result of the successive measurements of A and B does not depend on the order in which they are carried out. (d) Neither \left\{\hat{A}\right\} nor \left\{\hat{B}\right\} forms a CSCO since their eigenvalues are degenerate. The set \left\{\hat{A},\hat{B} \right\}, however, does form a CSCO since the opertators \left\{\hat{A}\right\} and \left\{\hat{B}\right\} commute. The set of eigenstates that are common to \left\{\hat{A},\hat{B} \right\} are given by

|a_{2},b_{1}〉=\frac{1}{\sqrt{2}} \left(\begin{matrix} 0 \\ i \\ 1 \end{matrix} \right),       |a_{1},b_{2}〉=\frac{1}{\sqrt {2}} \left(\begin{matrix} 0 \\ -i \\ 1 \end{matrix} \right),       |a_{3},b_{3}〉= \left(\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right).                                                               (3.211)

Related Answered Questions