Question 3.P.10: Consider a physical system which has a number of observables...

Consider a physical system which has a number of observables that are represented by the following matrices:

A=\left(\begin{matrix} 5 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{matrix} \right), B=\left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{matrix} \right) , C=\left(\begin{matrix} 0 & 3 & 0 \\ 3 & 0 & 2 \\ 0 & 2 & 0 \end{matrix} \right), D=\left (\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{matrix} \right).

(a) Find the results of the measurements of these observables.

(b) Which among these observables are compatible? Give a basis of eigenvectors common to these observables.

(c) Which among the sets of operators \left\{\hat{A}\right\} , \left\{\hat{B}\right\} , \left\{\hat{C}\right\} , \left\{\hat{D}\right\} and their various combinations, such as \left\{\hat{A},\hat{B}\right\} , \left\{\hat{A}\hat{C}\right\} , \left\{\hat{B}\hat{C}\right\} , \left\{\hat{A}\hat{D}\right\} , \left\{\hat{A}\hat{B} \hat{C}\right\}, form a complete set of commuting operators (CSCO)?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The measurements of A, B, C and D yield a_{1}=-1,a_{2}=3, a_{3}=5, b_{1}=-3,b_{2}=1,b_{3}=3, c_{1}=-1/\sqrt{2},c_{2}=0 ,c_{3} =1/\sqrt{2}, d_{1}=-1,d_{2}=d_{3}=1; the respective eigenvectors
of A, B, C and D are

|a_{1}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right),    |a_{2}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ 1 \\ 1 \end{matrix} \right),    |a_{3}〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right),                             (3.212)

 

|b_{1}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right),    |b_{2}〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right),    |b_{3}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ 1 \\ 1 \end{matrix} \right),                            (3.213)

 

|c_{1}〉=\frac{1}{\sqrt{26}}\left(\begin{matrix} 3 \\ -\sqrt{13} \\ 2 \end{matrix} \right),    |c_{2}〉=\frac{1}{\sqrt{13}}\left(\begin {matrix} 2 \\ 0 \\ -3 \end{matrix} \right),    |c_{3}〉=\frac{1}{\sqrt {26}}\left(\begin{matrix} 3 \\ \sqrt{13} \\ 2 \end{matrix} \right),             (3.214)

 

|d_{1}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ i \\ 1 \end {matrix} \right),    |d_{2}〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \end {matrix} \right),    |d_{3}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ 1 \\ i \end{matrix} \right).                         (3.215)

(b)We can verify that, among the observables A, B, C, and D, only A and B are compatible, since the matrices A and B commute; the rest do not commute with one another (neither A nor B commutes with C or D; C and D do not commute).

From (3.212) and (3.213) we see that the three states |a_{1}, b_{1}〉,|a_{2},b_{3}〉,|a_{3},b_{2}〉,

|a_{1},b_{1}〉=\frac{1}{\sqrt{2}}\left(\begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right),    |a_{2},b_{3}〉=\frac{1}{\sqrt{2}}\left(\begin {matrix} 0 \\ 1 \\ 1 \end{matrix} \right),     |a_{3},b_{2}〉=\left(\begin {matrix} 1 \\ 0 \\ 0 \end{matrix} \right),                        (3.216)

form a common, complete basis for A and B, since \hat{A}|a_{n} ,b_{m}〉=a_{n}|a_{n},b_{m}〉 and \hat{B}|a_{n},b_{m}〉=b_{m}|a_{n},b_{m}〉.

(c) First, since the eigenvalues of the operators \left\{\hat{A} \right\} , \left\{\hat{B}\right\}, and \left\{\hat {C} \right\} are all nondegenerate, each one of \left\{\hat{A} \right\} , \left\{\hat{B}\right\}, and \left\{\hat {C} \right\} forms separately a CSCO. Additionally, since two eigenvalues of \left\{\hat {D} \right\} are degenerate (d_{2}=d_{3}=1), the operator \left\{\hat {D} \right\} does not form a CSCO.

Now, among the various combinations \left\{\hat{A} ,\hat{B} \right\} , \left\{\hat{A}\hat{C}\right\} , \left\{\hat{B}\hat{C}\right\} , \left\{\hat{A}\hat{D}\right\}, and \left\{\hat{A}\hat {B} \hat{C}\right\}, only \left\{\hat{A} ,\hat{B} \right\} forms a CSCO, because \left\{\hat{A}\right\} and \left\{\hat{B}\right\} are the only operators that commute; the set of their joint eigenvectors are given by |a_{1}, b_{1}〉,|a_{2},b_{3}〉,|a_{3},b_{2}〉.

Related Answered Questions