Question 3.P.11: Consider a system whose initial state |ψ(0)〉 and Hamiltonia...

Consider a system whose initial state |\psi (0)〉 and Hamiltonian are given by

|\psi (0)〉=\frac{1}{5}\left(\begin{matrix} 3 \\ 0 \\ 4 \end{matrix} \right),       H=\left(\begin{matrix} 3 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 5 & 0 \end{matrix} \right).

(a) If a measurement of the energy is carried out, what values would we obtain and with what probabilities?

(b) Find the state of the system at a later time t; you may need to expand |\psi (0)〉 in terms of the eigenvectors of H.

(c) Find the total energy of the system at time t = 0 and any later time t; are these values different?
(d) Does \left\{\hat{H}\right\} form a complete set of commuting operators?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) A measurement of the energy yields the values E_{1}=-5 ,E_{2} =3,E_{3}=5; the respective (orthonormal) eigenvectors of these values are

|\phi _{1} 〉=\frac{1}{\sqrt{2}} \left(\begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right),     |\phi _{2} 〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \end {matrix} \right),     |\phi _{3} 〉=\frac{1}{\sqrt{2}} \left(\begin {matrix} 0 \\ 1 \\ 1 \end{matrix} \right).                               (3.217)

The probabilities of finding the values E_{1}=-5,E_{2} =3,E_{3} =5 are given by

P(E_{1})=\left|〈\phi _{1}|\psi (0) 〉\right| ^{2}= \left|\frac{1}{5 \sqrt{2}}\left(\begin{matrix} 0 & -1 & 1\end{matrix} \right) \left (\begin {matrix} 3 \\ 0 \\ 4 \end{matrix} \right) \right| ^{2} =\frac{8}{25},                  (3.218)

 

P(E_{2})=\left|〈\phi _{2}|\psi (0) 〉\right| ^{2}= \left|\frac{1}{5}\left(\begin{matrix} 1 & 0 & 0\end{matrix} \right) \left(\begin {matrix} 3 \\ 0 \\ 4 \end{matrix} \right) \right| ^{2} =\frac{9}{25},                  (3.219)

 

P(E_{3})=\left|〈\phi _{3}|\psi (0) 〉\right| ^{2}= \left|\frac{1}{5\sqrt{2}}\left(\begin{matrix} 0 & 1 & 1\end{matrix} \right) \left (\begin{matrix} 3 \\ 0 \\ 4 \end{matrix} \right) \right| ^{2} =\frac{8}{25}.                      (3.220)

(b) To find |\psi (t)〉 we need to expand |\psi (0)〉 in terms of the eigenvectors (3.217):

|\psi (0)〉=\frac{1}{5}\left(\begin{matrix} 3 \\ 0 \\ 4 \end {matrix} \right)=\frac{2\sqrt{2} }{5}|\phi _{1} 〉+\frac{3}{5}|\phi _{2} 〉+\frac{2\sqrt{2} }{5} |\phi _{3} 〉;                       (3.221)

hence

|\psi (t)〉=\frac{2\sqrt{2} }{5} e^{-iE_{1}t} |\phi _{1} 〉+\frac{3}{5}e^{-iE_{2}t} |\phi _{2} 〉+\frac{2\sqrt{2} }{5}e^{-iE_{3}t} |\phi _{3} 〉=\frac{1}{5}\left(\begin{matrix} 3e^{-3it} \\ -4i\sin 5t \\ 4\cos 5t \end{matrix} \right).                            (3.222)

(c)We can calculate the energy at time t = 0 in three quite different ways. The first method uses the bra-ket notation. Since 〈\psi (0)|\psi (0)〉=1,〈\phi _{n})|\phi _{m}〉=\delta _{nm} and since \hat{H}|\phi _{n}〉=E_{n}|\phi _{n}〉, we have

E(0)=〈\psi (0)|\hat{H}|\psi (0)〉=\frac{8}{25}〈\phi _{1}|\hat {H}|\phi _{1}〉+\frac{9}{25}〈\phi _{2}|\hat{H}|\phi _{2}〉+\frac{8}{25} 〈\phi _{3}|\hat{H}|\phi _{3}〉

 

=\frac{8}{25}(-5)+\frac{9}{25}(3)+\frac{8}{25}(5)=\frac{27}{25}.                   (3.223)

The second method uses matrix algebra:

E(0)=〈\psi (0)|\hat{H}|\psi (0)〉=\frac{1}{25}\left(\begin {matrix} 3 & 0 & 4 \end{matrix} \right)\left(\begin{matrix} 3 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 5 & 0 \end{matrix} \right)\left(\begin{matrix} 3 \\ 0 \\ 4 \end{matrix} \right)=\frac{27}{25}.                       (3.224)

The third method uses the probabilities:

E(0)=\sum\limits_{n=1}^{2}P(E_{n})E_{n}=\frac{8}{25}(-5)+\frac{9}{25}(3)+\frac{8}{25}(5)=\frac{27}{25}.                (3.225)

The energy at a time t is

E(t)=〈\psi (t)|\hat{H}|\psi (t)〉=\frac{8}{25}e^{iE_{1}t}e^{-iE_{1}t}〈\phi _{1}|\hat{H}|\phi _{1}〉+\frac{9}{25}e^{iE_{2}t} e^{-iE_{2}t}〈\phi _{2}|\hat{H}|\phi _{2}〉

 

+\frac{8}{25}e^{iE_{3}t}e^{-iE_{3}t} 〈\phi _{3}|\hat{H}|\phi _{3}〉=\frac{8}{25}(-5)+\frac{9}{25}(3)+\frac{8}{25}(5)=\frac{27}{25} =E(0).                    (2.226)

As expected, E(t)=E(0) since d\left\{\hat{H} \right\}/dt=0.

(d) Since none of the eigenvalues of \hat{H} is degenerate, the eigenvectors |\phi _{1} 〉,|\phi _{2} 〉,|\phi _{3} 〉 form a compete (orthonormal) basis. Thus \left\{\hat {H}\right\} forms a complete set of commuting operators.

Related Answered Questions