Question 5.P.4: (a) Find the eigenvalues and eigenstates of the spin operato...

(a) Find the eigenvalues and eigenstates of the spin operator \vec{S} of an electron in the direction of a unit vector \vec{n}; assume that \vec{n} lies in the xz plane.

(b) Find the probability of measuring \vec{S}_{z} =+\hbar/2.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In this question we want to solve

\vec{n}.\vec{S}|\lambda〉 =\frac{\hbar }{2} \lambda |\lambda 〉,                   (5.221)

where \vec{n} is given by \vec{n}=(\sin \theta \vec{i}+\cos \theta \vec{k}), because it lies in the xz plane, with 0 ≤ θ ≤ π. We can thus write

\vec{n}.\vec{S}=(\sin \theta \vec{i}+\cos \theta \vec{k}).(S_{x}\vec{i}+S_{y}\vec{j}+S_{z}\vec{k} )=S_{x} \sin \theta +S_{z} \cos \theta .               (5.222)

Using the spin matrices

\vec{S}_{x}=\frac{\hbar }{2}\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right),       \vec{S}_{y}=\frac{\hbar }{2} \left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right),        \vec{S}_{z}=\frac{\hbar }{2}\left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right),         (5.223)

we can write (5.222) in the following matrix form:

\vec{n}.\vec{S}=\frac{\hbar }{2}\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right)\sin \theta +\frac{\hbar }{2}\left(\begin {matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right)\cos \theta =\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{matrix} \right).           (5.224)

The diagonalization of this matrix leads to the following secular equation:

-\frac{\hbar ^{2} }{4}(\cos \theta -\lambda )(\cos \theta +\lambda ) -\frac{\hbar ^{2} }{4}\sin ^{2} \theta =0,                (5.225)

which in turn leads as expected to the eigenvalues λ = ±1.

The eigenvector corresponding to λ = 1 can be obtained from

\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{matrix} \right)\left(\begin{matrix} a \\ b \end{matrix} \right) =\frac{\hbar }{2}\left(\begin{matrix} a \\ b \end{matrix} \right).                     (5.226)

This matrix equation can be reduced to a single equation

a\sin \frac{1}{2} \theta =b\cos \frac{1}{2}\theta.                     (5.227)

Combining this equation with the normalization condition \left |a\right|^{2} +\left|b\right|^{2} =1, we infer that a= \cos \frac{1}{2}\theta and b=\sin \frac{1}{2} \theta ; hence the eigenvector corresponding to λ = 1 is

|\lambda _{+} 〉=\left(\begin{matrix} \cos (\theta /2) \\ \sin (\theta /2) \end{matrix} \right) .                      (5.228)

Proceeding in the same way, we can easily obtain the eigenvector for λ = -1:

|\lambda _{-} 〉=\left(\begin{matrix} -\sin (\theta /2) \\ \cos (\theta /2) \end{matrix} \right).                      (5.229)

(b) Let us write |\lambda _{\pm } 〉of (5.228) and (5.229) in terms of the spin-up and spin-down eigen-vectors, \left|{\frac{1}{2},\frac{1}{2}}\right\rangle =\left(\begin{matrix} 1 \\ 0 \end{matrix} \right) and \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle=\left(\begin{matrix} 0 \\ 1 \end{matrix} \right):

|\lambda _{+} 〉=\cos \frac{1}{2}\theta \left|{\frac{1}{2},\frac{1}{2}}\right\rangle+\sin \frac{1}{2} \theta \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle,                   (5.230)

|\lambda _{-} 〉=-\sin \frac{1}{2} \theta\left|{\frac{1}{2},\frac {1}{2}}\right\rangle+\cos \frac{1}{2}\theta\left|{\frac{1}{2},-\frac{1}{2}}\right\rangle.                 (5.231)

We see that the probability of measuring \vec{S}_{z} =+\hbar/2 is given by

\left|\left\langle \frac{1}{2},\frac{1}{2}| \lambda _{+} \right\rangle \right| ^{2} =\cos ^{2} \frac{1}{2}\theta .                        (5.232)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...