Let E_{1} = \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] , E_{2} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{matrix} \right ] , and A = \left [ \begin{matrix} 1 & 1 & 3 \\ 0 & -1 & 2 \\ 0 & 5 & 6 \end{matrix} \right ] . Calculate E_{1}A and E_{2}E_{1}A . Describe the products in terms of matrices obtained from A by elementary row operations.