(a)We need to solve
\vec{n}.\vec{S}|\lambda〉 =\frac{\hbar }{2} \lambda |\lambda 〉, (5.233)
where \vec{n}, a unit vector pointing along an arbitrary direction, is given in spherical coordinates by
\vec{n}=(\sin \theta \cos \varphi )\vec{i}+(\sin \theta \sin \varphi )\vec{j}+(\cos \theta )\vec{k}, (5.234)
with 0\leq \theta \leq \pi and 0\leq \varphi \leq 2\pi . We can thus write
\vec{n}.\vec{S}=(\sin \theta \cos \varphi \vec{i}+\sin \theta \sin \varphi \vec{j}+\cos \theta \vec{k}).(S_{x}\vec{i}+ S_{y}\vec{j} +S_{z} \vec{k})
=S_{x}\sin \theta \cos \varphi +S_{y}\sin \theta \sin \varphi +S_{z}\cos \theta . (5.235)
Using the spin matrices, we can write this equation in the following matrix form:
\vec{n}.\vec{S}=\frac{\hbar }{2} \left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right) \sin \theta \cos \varphi +\frac{\hbar }{2} \left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right)\sin \theta \sin \varphi+\frac{\hbar }{2} \left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right)\cos \theta
=\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & \sin \theta (\cos \varphi -i\sin \varphi ) \\ \sin \theta (\cos \varphi +i\sin \varphi ) & -\cos \theta \end{matrix} \right)
=\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & e^{-i\varphi }\sin \theta \\ e^{i\varphi }\sin \theta & -\cos \theta \end{matrix} \right). (5.236)
Diagonalization of this matrix leads to the secular equation
-\frac{\hbar ^{2} }{4} (\cos \theta -\lambda )(\cos \theta +\lambda )-\frac{\hbar ^{2} }{4}\sin ^{2} \theta =0, (5.237)
which in turn leads to the eigenvalues λ = ±1.
The eigenvector corresponding to λ = 1 can be obtained from
\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & e^{-i\varphi }\sin \theta \\ e^{i\varphi }\sin \theta & -\cos \theta \end{matrix} \right)\left(\begin{matrix} a \\ b \end{matrix} \right) =\frac{\hbar }{2}\left(\begin{matrix} a \\ b \end{matrix} \right), (5.238)
which leads to
a\cos \theta +be^{-i\varphi }\sin \theta =a (5.239)
or
a(1-\cos \theta )=be^{-i\varphi }\sin \theta. (5.240)
Using the relations 1-\cos \theta =2\sin ^{2} \frac{1}{2}\theta and \sin \theta =2\cos \frac{1}{2}\theta \sin \frac{1}{2}\theta, we have
b=a\tan \frac{1}{2}\theta e^{i\varphi }. (5.241)
Combining this equation with the normalization condition \left| a\right| ^{2}+\left|b\right| ^{2} =1, we obtain a=\cos \frac{1}{2}\theta and b=e^{i\varphi }\sin \frac{1}{2}\theta. Thus, the eigenvector corresponding to λ = 1 is
|\lambda _{+} 〉=\left(\begin{matrix} \cos (\theta /2) \\ e^{i\varphi }\sin (\theta /2) \end{matrix} \right) . (5.242)
A similar treatment leads to the eigenvector for λ = -1:
|\lambda _{-} 〉=\left(\begin{matrix} -\sin (\theta /2) \\ e^{i\varphi }\cos (\theta /2) \end{matrix} \right) . (5.243)
(b) Write |\lambda _{-} 〉 of (5.243) in terms of \left|{\frac{1}{2},\frac{1}{2}}\right\rangle =\left(\begin{matrix} 1 \\ 0 \end{matrix} \right) and \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle=\left(\begin{matrix} 0 \\ 1 \end{matrix} \right):
|\lambda _{+} 〉=\cos \frac{1}{2}\theta \left|{\frac{1}{2},\frac {1}{2}}\right\rangle+e^{i\varphi } \sin \frac{1}{2} \theta \left|{\frac {1}{2},-\frac{1}{2}}\right\rangle, (5.244)
|\lambda _{-} 〉=-\sin \frac{1}{2}\theta \left|{\frac{1}{2},\frac {1}{2}}\right\rangle+e^{i\varphi }\cos \frac{1}{2}\theta \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle. (5.245)
We can then obtain the probability of measuring \hat{S}_{z} =-\hbar /2:
\left|\left\langle \frac{1}{2},-\frac{1}{2}| \lambda _{-} \right \rangle \right| ^{2}=\cos ^{2} \frac{1}{2}\theta . (5.246)
(c) The spin’s eigenstates at time t are given by
|\lambda _{+}(t) 〉=e^{-iE_{+}t/\hbar }\cos \frac{1}{2}\theta \left|{\frac{1}{2},\frac{1}{2}}\right\rangle+e^{i(\varphi -E-t/\hbar )} \sin \frac{1}{2} \theta \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle , (5.247)
|\lambda _{-}(t) 〉=-e^{-iE_{+}t/\hbar }\sin \frac{1}{2} \theta \left|{\frac{1}{2},\frac{1}{2}}\right\rangle+e^{i(\varphi -E-t/\hbar )}\cos \frac{1}{2}\theta\left|{\frac{1}{2},-\frac{1}{2}}\right\rangle , (5.248)
where E_{\pm }are the energy eigenvalues corresponding to the spin-up and spin-down states, respectively.