Question 6.P.2: Show how to obtain the expressions of: (a) 〈nl|r^-2|nl 〉 a...

Show how to obtain the expressions of: (a) 〈nl|r^{-2}|nl 〉 and (b) 〈nl|r^{-1}|nl 〉 ; that is, prove (6.183) and (6.182).

〈nl|r^{-2}|nl 〉=\frac{2}{n^{3}(2l+1)a^{2}_{0} },         (6.183)

〈nl|r^{-1}|nl 〉=\frac{1}{n^{2}a_{0} },            (6.182)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The starting point is the radial equation (6.127),

-\frac{\hbar ^{2} }{2\mu } \frac{d^{2}U(r) }{dr^{2} } +\left[\frac{l(l+1)\hbar ^{2}}{2\mu r^{2}}-\frac{e^{2} }{r} \right] U(r)=EU(r).               (6.127)

 

-\frac{\hbar ^{2} }{2\mu } \frac{d^{2}U_{nl} (r) }{dr^{2} } +\left[\frac{l(l+1)\hbar ^{2}}{2\mu r^{2}}-\frac{e^{2} }{r} \right] U_{nl}(r)=E_{n}U_{nl}(r),             (6.218)

which can be rewritten as

\frac{U^{\prime \prime }_{nl}(r) }{U_{nl}(r)} =\frac{l(l+1)}{r^{2}} -\frac{2\mu e^{2}}{\hbar ^{2}} \frac{1}{r}+\frac{\mu ^{2} e^{4}}{\hbar ^{4}n^{2}},                  (6.219)

where U_{nl}(r)=rR_{nl} (r), U^{\prime \prime }_{nl}(r) =d^{2} U_{nl}(r)/dr^{2}, and E_{n} =-\mu e^{4} /(2\hbar ^{2}n^{2}).

(a) To find \left\langle r^{-2} \right\rangle _{nl}, let us treat the orbital quantum number l as a continuous variable and take the first l derivative of (6.219):

\frac{∂}{∂l} \left[\frac{U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right] =\frac{2l+1}{r^{2}} -\frac{2\mu ^{2}e^{4} }{\hbar ^{4}n^{3}},                 (6.220)

where we have the fact that n depends on l since, as shown in (6.145), n = N + l + 1; thus ∂n / ∂l =1 . Now since ∫^{\infty }_{0} U^{2} _{nl} (r)dr=∫^{\infty }_{0} r^{2} R^{2}_{nl} (r)dr=1, multiplying both sides of (6.220) by U^{2}_{nl} (r) and integrating over r we get

∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=(2l+1)∫^{\infty }_{0} U^{2}_{nl} (r)\frac{1}{r^{2}}dr -\frac{2\mu ^{2}e^{4}}{\hbar ^{4}n^{3}} ∫^{\infty }_{0} U^{2}_{nl} (r)dr,           (6.221)

or

∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=(2l+1)\left\langle nl|\frac{1}{r^{2}}|nl \right\rangle -\frac{2\mu ^{2}e^{4}}{\hbar ^{4}n^{3}}.                  (6.222)

The left-hand side of this relation is equal to zero, since

∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=∫^{\infty }_{0} U_{nl} (r)\frac{∂U^{\prime \prime }_{nl}(r)}{∂l} dr-∫^{\infty }_{0} U^{\prime \prime }_{nl} (r)\frac{∂U_{nl}(r)}{∂l} dr=0.  (6.223)

We may therefore rewrite (6.222) as

(2l+1)\left\langle nl|\frac{1}{r^{2} }|nl \right\rangle =\frac {2\mu ^{2}e^{4}}{\hbar ^{4}n^{3}};                          (6.224)

hence

\left\langle nl|\frac{1}{r^{2} }|nl \right\rangle=\frac{2}{n^{3}(2l+1)a^{2}_{0} },                            (6.225)

since a_{0} =\hbar ^{2} /(\mu e^{2} ).

(b) To find \left\langle r^{-1} \right\rangle _{nl} we need now to treat the electron’s charge e as a continuous variable in (6.219). The first e-derivative of (6.219) yields

\frac{∂}{∂l} \left[\frac{U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right] =-\frac{4\mu e}{\hbar ^{2}} \frac{1}{r} +\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}.                       (6.226)

Again, since ∫^{\infty }_{0} U^{2}_{nl} (r)dr=1, multiplying both sides of (6.226) by U^{2}_{nl} (r) and integrating over r we obtain

∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=-\frac{4\mu e}{\hbar ^{2}}∫^{\infty }_{0}U^{2}_{nl} (r)\frac{1}{r}dr +\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}∫^{\infty }_{0}U^{2}_{nl} (r)dr,       (6.227)

or

∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=-\frac{4\mu e}{\hbar ^{2}}\left\langle nl|\frac{1}{r }|nl \right\rangle+\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}.                  (6.228)

As shown in (6.223), the left-hand side of this is equal to zero. Thus, we have

\frac{4\mu e}{\hbar ^{2}}\left\langle nl|\frac{1}{r }|nl \right \rangle=\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}\Longrightarrow \left\langle nl|\frac{1}{r }|nl \right\rangle=\frac{1}{n^{2}a_{0} },             (6.229)

since a_{0} =\hbar ^{2} /(\mu e^{2} ).

Related Answered Questions