Show how to obtain the expressions of: (a) 〈nl|r^{-2}|nl 〉 and (b) 〈nl|r^{-1}|nl 〉 ; that is, prove (6.183) and (6.182).
〈nl|r^{-2}|nl 〉=\frac{2}{n^{3}(2l+1)a^{2}_{0} }, (6.183)
〈nl|r^{-1}|nl 〉=\frac{1}{n^{2}a_{0} }, (6.182)
Show how to obtain the expressions of: (a) 〈nl|r^{-2}|nl 〉 and (b) 〈nl|r^{-1}|nl 〉 ; that is, prove (6.183) and (6.182).
〈nl|r^{-2}|nl 〉=\frac{2}{n^{3}(2l+1)a^{2}_{0} }, (6.183)
〈nl|r^{-1}|nl 〉=\frac{1}{n^{2}a_{0} }, (6.182)
The starting point is the radial equation (6.127),
-\frac{\hbar ^{2} }{2\mu } \frac{d^{2}U(r) }{dr^{2} } +\left[\frac{l(l+1)\hbar ^{2}}{2\mu r^{2}}-\frac{e^{2} }{r} \right] U(r)=EU(r). (6.127)
-\frac{\hbar ^{2} }{2\mu } \frac{d^{2}U_{nl} (r) }{dr^{2} } +\left[\frac{l(l+1)\hbar ^{2}}{2\mu r^{2}}-\frac{e^{2} }{r} \right] U_{nl}(r)=E_{n}U_{nl}(r), (6.218)
which can be rewritten as
\frac{U^{\prime \prime }_{nl}(r) }{U_{nl}(r)} =\frac{l(l+1)}{r^{2}} -\frac{2\mu e^{2}}{\hbar ^{2}} \frac{1}{r}+\frac{\mu ^{2} e^{4}}{\hbar ^{4}n^{2}}, (6.219)
where U_{nl}(r)=rR_{nl} (r), U^{\prime \prime }_{nl}(r) =d^{2} U_{nl}(r)/dr^{2}, and E_{n} =-\mu e^{4} /(2\hbar ^{2}n^{2}).
(a) To find \left\langle r^{-2} \right\rangle _{nl}, let us treat the orbital quantum number l as a continuous variable and take the first l derivative of (6.219):
\frac{∂}{∂l} \left[\frac{U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right] =\frac{2l+1}{r^{2}} -\frac{2\mu ^{2}e^{4} }{\hbar ^{4}n^{3}}, (6.220)
where we have the fact that n depends on l since, as shown in (6.145), n = N + l + 1; thus ∂n / ∂l =1 . Now since ∫^{\infty }_{0} U^{2} _{nl} (r)dr=∫^{\infty }_{0} r^{2} R^{2}_{nl} (r)dr=1, multiplying both sides of (6.220) by U^{2}_{nl} (r) and integrating over r we get
∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=(2l+1)∫^{\infty }_{0} U^{2}_{nl} (r)\frac{1}{r^{2}}dr -\frac{2\mu ^{2}e^{4}}{\hbar ^{4}n^{3}} ∫^{\infty }_{0} U^{2}_{nl} (r)dr, (6.221)
or
∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=(2l+1)\left\langle nl|\frac{1}{r^{2}}|nl \right\rangle -\frac{2\mu ^{2}e^{4}}{\hbar ^{4}n^{3}}. (6.222)
The left-hand side of this relation is equal to zero, since
∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=∫^{\infty }_{0} U_{nl} (r)\frac{∂U^{\prime \prime }_{nl}(r)}{∂l} dr-∫^{\infty }_{0} U^{\prime \prime }_{nl} (r)\frac{∂U_{nl}(r)}{∂l} dr=0. (6.223)
We may therefore rewrite (6.222) as
(2l+1)\left\langle nl|\frac{1}{r^{2} }|nl \right\rangle =\frac {2\mu ^{2}e^{4}}{\hbar ^{4}n^{3}}; (6.224)
hence
\left\langle nl|\frac{1}{r^{2} }|nl \right\rangle=\frac{2}{n^{3}(2l+1)a^{2}_{0} }, (6.225)
since a_{0} =\hbar ^{2} /(\mu e^{2} ).
(b) To find \left\langle r^{-1} \right\rangle _{nl} we need now to treat the electron’s charge e as a continuous variable in (6.219). The first e-derivative of (6.219) yields
\frac{∂}{∂l} \left[\frac{U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right] =-\frac{4\mu e}{\hbar ^{2}} \frac{1}{r} +\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}. (6.226)
Again, since ∫^{\infty }_{0} U^{2}_{nl} (r)dr=1, multiplying both sides of (6.226) by U^{2}_{nl} (r) and integrating over r we obtain
∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=-\frac{4\mu e}{\hbar ^{2}}∫^{\infty }_{0}U^{2}_{nl} (r)\frac{1}{r}dr +\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}∫^{\infty }_{0}U^{2}_{nl} (r)dr, (6.227)
or
∫^{\infty }_{0}U^{2}_{nl} (r) \frac{∂}{∂l} \left[\frac {U^{\prime \prime }_{nl}(r)}{U_{nl}(r)} \right]dr=-\frac{4\mu e}{\hbar ^{2}}\left\langle nl|\frac{1}{r }|nl \right\rangle+\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}. (6.228)
As shown in (6.223), the left-hand side of this is equal to zero. Thus, we have
\frac{4\mu e}{\hbar ^{2}}\left\langle nl|\frac{1}{r }|nl \right \rangle=\frac{4\mu ^{2}e^{3}}{\hbar ^{4}n^{2}}\Longrightarrow \left\langle nl|\frac{1}{r }|nl \right\rangle=\frac{1}{n^{2}a_{0} }, (6.229)
since a_{0} =\hbar ^{2} /(\mu e^{2} ).