Question 6.P.3: (a) Use Kramers’ recursion rule (6.184) to obtain expression...

(a) Use Kramers’ recursion rule (6.184)

\frac{k+1}{n^{2} } 〈nl|r^{k}|nl 〉-(2k+1)a_{0} 〈nl|r^{k-1}|nl 〉+\frac{ka^{2}_{0} }{4} \left[(2l+1)^{2}-k^{2} \right] 〈nl|r^{k-2}|nl 〉=0.      (6.184)

to obtain expressions (6.180) to (6.182)

〈nl|r|nl 〉=\frac{1}{2} \left[3n^{2}-l(l+1) \right] a_{0},    (6.180)

〈nl|r^{2}|nl 〉=\frac{1}{2}n^{2} \left[5n^{2}+1-3l(l+1) \right]a^{2}_{0},         (6.181)

〈nl|r^{-1}|nl 〉=\frac{1}{n^{2}a_{0} },          (6.182)

for 〈nl|r^{-1}|nl 〉,〈nl|r|nl 〉, and 〈nl|r^{2}|nl 〉.

(b) Using (6.225)

\left\langle nl|\frac{1}{r^{2} }|nl \right\rangle =\frac{2}{n^{3}(2l+1)a^{2}_{0} },      (6.225)

for 〈nl|r^{-2}|nl 〉 and combining it with Kramers’ rule, obtain the expression for 〈nl|r^{-3}|nl 〉.

(c) Repeat (b) to obtain the expression for 〈nl|r^{-4}|nl 〉.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) First, to obtain 〈nl|r^{-1}|nl 〉, we need simply to insert k = 0 into Kramers’ recursion rule (6.184):

\frac{k+1}{n^{2} } 〈nl|r^{k}|nl 〉-(2k+1)a_{0} 〈nl|r^{k-1}|nl 〉+\frac{ka^{2}_{0} }{4} \left[(2l+1)^{2}-k^{2} \right] 〈nl|r^{k-2}|nl 〉=0.      (6.184)

\frac{1}{n^{2}} \left\langle nl|r^{0}|nl\right\rangle -a_{0}\left \langle nl|r^{-1}|nl\right\rangle=0            (6.230)

hence

\left\langle nl|\frac{1}{r}|nl \right\rangle =\frac{1}{n^{2}a_{0}}.                  (6.231)

Second, an insertion of k = 1 into (6.184) leads to the relation for 〈nl|r|nl 〉:

\frac{2}{n^{2}} 〈nl|r|nl 〉-3a_{0}\left\langle nl|r^{0}|nl \right\rangle+\frac{a^{2}_{0} }{4} \left[(2l+1)^{2}-1 \right] \left\langle nl|r^{-1}|nl\right\rangle=0,         (6.232)

and since \left\langle nl|r^{-1}|nl\right\rangle=1/(n^{2}a_{0}), we have

〈nl|r|nl 〉=\frac{1}{2} \left[3n^{2}-l(l+1) \right]a_{0}.           (6.233)

Third, substituting k = 2 into (6.184) we get

\frac{3}{n^{2}} \left\langle nl|r^{2}|nl\right\rangle-5a_{0} \left\langle nl|r|nl\right\rangle+\frac{a^{2}_{0} }{4} \left[(2l+1)^{2} -4 \right] \left\langle nl|r^{0}|nl\right\rangle=0,            (6.234)

which when combined with 〈nl|r|nl 〉=\frac{1}{2} \left[3n^{2}-l(l+1) \right]a_{0} yields

\left\langle nl|r^{2}|nl\right\rangle=\frac{1}{2}n^{2}\left [5n^{2}+1-3l(l+1) \right]a^{2}_{0}.                 (6.235)

We can continue in this way to obtain any positive power of r: 〈nl|r^{k}|nl 〉.

(b) Inserting k = -1 into Kramers’ rule,

0+a_{0}\left\langle nl|r^{-2}|nl\right\rangle-\frac{1}{4} \left[(2l+1)^{2}-1 \right]a_{0}\left\langle nl|r^{-3}|nl\right\rangle,            (6.236)

we obtain

\left\langle nl|\frac{1}{r^{3} }|nl\right\rangle=\frac{1}{l(l+1) a_{0}} \left\langle nl|\frac{1}{r^{2} }|nl\right\rangle,                      (6.237)

where the expression for 〈nl|r^{-2}|nl 〉 is given by (6.225);

\left\langle nl|\frac{1}{r^{2} }|nl \right\rangle =\frac{2}{n^{3}(2l+1)a^{2}_{0} },      (6.225)

thus, we have

\left\langle nl|\frac{1}{r^{3} }|nl\right\rangle=\frac{2}{n^{3}l(l+1)(2l+1)a^{3}_{0}}.                                        (6.238)

(c) To obtain the expression for 〈nl|r^{-4}|nl 〉 we need to substitute k = -2 into Kramers’ rule:

-\frac{1}{n^{2}}\left\langle nl|r^{-2}|nl\right\rangle +3a_{0} \left\langle nl|r^{-3}|nl\right\rangle-\frac{a^{2}_{0}}{2} \left [(2l+1)^{2}-4 \right]\left\langle nl|r^{-4}|nl\right\rangle=0.               (6.239)

Inserting (6.225) and (6.238) for 〈nl|r^{-2}|nl 〉 and 〈nl|r^{-3}|nl 〉, we obtain

\left\langle nl|\frac{1}{r^{4} }|nl\right\rangle=\frac {4\left [3n^{2}-l(l+1) \right] }{n^{5}l(l+1)(2l+1)\left[(2l+1)^{2}-4 \right] a^{4}_{0}} .                       (6.240)

We can continue in this way to obtain any negative power of r: 〈nl|r^{-k}|nl 〉.

Related Answered Questions