Question 6.P.6: (a) For the following cases, calculate the value of r at whi...

(a) For the following cases, calculate the value of r at which the radial probability density of the hydrogen atom reaches its maximum: (i) n = 1, l = 0, m = 0; (ii) n = 2, l = 1, m = 0; (iii) l = n – 1, m = 0.

(b) Compare the values obtained with the Bohr radius for circular orbits.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since the radial wave function for n = 1 and l = 0 is R_{10}(r)= 2a^{-3/2}_{0} e^{-r/a_{0} }, the probability density is given by

P_{10}(r)=r^{2} \left|R_{10}(r)\right| ^{2} =\frac{4}{a^{3}_{0}} r^{2}e^{-2r/a_{0} }.                                           (6.259)

(i) The maximum of P_{10}(r) occurs at r_{1}:

\frac{dP_{10}(r)}{dr} \mid _{r=r_{1}} =0\Longrightarrow 2r_{1} -\frac{2r^{2}_{1} }{a_{0} } =0\Longrightarrow r_{1}=a_{0}.                  (6.260)

(ii) Similarly, since R_{21}(r)=1/(2\sqrt{6}a^{5/2}_{0} )re^{-r/2a_{0} }, we have

P_{21}(r)=r^{2} \left|R_{21}(r)\right| ^{2} =\frac{1}{24a^{5}_ {0} } r^{4} e^{-r/a_{0} }.                          (6.261)

The maximum of the probability density is given by

\frac{dP_{21}(r)}{dr} \mid _{r=r_{2}} =0\Longrightarrow 4r^{3}_{2} -\frac{r^{4}_{2}}{a_{0}} =0\Longrightarrow r_{2}=4 a_{0}.                        (6.262)

(iii) The radial function for l = n – 1 can be obtained from (6.170):

R_{nl}(r)=-\left(\frac{2}{na_{0}} \right) ^{3/2} \sqrt{\frac{(n-l-1)!}{2n[(n+l)!]^{3} } } \left(\frac{2r}{na_{0}} \right) ^{l} e^{-r/ na_{0} }L^{2l+1}_{n+l} \left(\frac{2r}{na_{0}} \right)                (6.170)

 

R_{n(n-1)}(r)=-\left(\frac{2}{na_{0}} \right) ^{3/2}\frac{1}{\sqrt{2n[(2n-1)!]^{3} } } \left(\frac{2r}{na_{0}} \right) ^{(n-1)} e^{-r/na_{0} }L^{2n-1}_{2n-1}\left(\frac{2r}{na_{0}} \right).                (6.263)

From (6.159)

L^{N}_{k} (r)=\frac{d^{N} }{dr^{N} } L_{k} (r),                (6.159)

and (6.160)

L_{k} (r)=e^{r} \frac{d^{k} }{dr^{k} } (r^{k}e^{-r} ).                      (6.160)

we can verify that the associated Laguerre polynomial L^{2n-1}_{2n-1} is a con-stant, L^{2n-1}_{2n-1}(y)=-(2n-1)!. We can thus write R_{n(n-1)}(r) as R_{n(n-1)}(r)=A_{n} r^{n-1} e^{-r/na_{0}}, where A_{n} is a constant. Hence the probability density is given by

P_{n(n-1)} (r)=r^{2} \left|R_{n(n-1)}(r)\right| ^{2} =A^{2} _{n} r^{2n} e^{-2r/na_{0}}.                            (6.264)

The maximum of the probability density is given by

\frac{dP_{n(n-1)} (r)}{dr} \mid _{r=r_{n} } =0\Longrightarrow 2nr^{2n-1}_{n} -\frac{2r^{2n}_{n} }{na_{0}} =0\Longrightarrow r_{n}=n^{2} a_{0}.                (6.265)

(b) The values of r_{n} displayed in (6.260), (6.262), and (6.265) are nothing but the Bohr radii for circular orbits, r_{n}= n^{2} a_{0}. The Bohr radius r_{n}= n^{2} a_{0} gives the position of maximum probability density for an electron in a hydrogen atom.

figure (6.5)

Related Answered Questions