Question 6.P.8: The operators associated with the radial component of the mo...

The operators associated with the radial component of the momentum P_{r} and the radial coordinate r are denoted by \hat{P}_{r} and \hat{R}, respectively. Their actions on a radial wave function \psi (r) are given by \hat{P}_{r}\psi (\vec{r})=-i\hbar (1/r)(∂/∂r)(r\psi (\vec{r})) and \hat{R} \psi (\vec{r})=r\psi (\vec{r}).

(a) Find the commutator [\hat{P}_{r} ,\hat{R}] and \Delta P_{r}\Delta r , where \Delta r=\sqrt{〈\hat{R}^{2} 〉-〈\hat{R}〉^{2} } and \Delta P_{r}\sqrt{〈\hat{P}^{2}_{r}〉-〈\hat{P}_{r} 〉^{2} }.

(b) Show that \hat{P}^{2}_{r}=-(\hbar ^{2} /r)(∂^{2}/∂r^{2})r.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since \hat{R} \psi (\vec{r})=r\psi (\vec{r}) and

\hat{P}_{r}\psi (\vec{r})=-i\hbar \frac{1}{r} \frac{∂}{∂r} (r\psi (\vec{r}))=-i\hbar \frac{1}{r} \psi (\vec{r})-i\hbar \frac{∂\psi (\vec{r})}{∂r},             (6.269)

and since

\hat{P}_{r}(\hat{R} \psi (\vec{r}))=-i\hbar \frac{1}{r} \frac{∂}{∂r}\left(r^{2}\psi (\vec{r})\right) =-2i\hbar \psi (\vec{r})-i\hbar r\frac{∂\psi (\vec{r})}{∂r},                 (6.270)

the action of the commutator [\hat{P}_{r} ,\hat{R}] on a function \psi (\vec{r}) is given by

[\hat{P}_{r} ,\hat{R}]\psi (\vec{r})=-i\hbar \left[\frac{1}{r} \frac{∂}{∂r}r,\hat{R}\right] \psi (\vec{r})=-i\hbar \frac{1}{r} \frac{∂}{∂r}\left(r^{2}\psi (\vec{r})\right)+i\hbar \frac{∂}{∂r}(r\psi (\vec{r}))

 

=-2i\hbar \psi (\vec{r})-i\hbar r\frac{∂\psi (\vec{r})}{∂r}+i \hbar \psi (\vec{r})+i\hbar r\frac{∂\psi (\vec{r})}{∂r}

 

=-i\hbar \psi (\vec{r}).                                                  (6.271)

Thus, we have

[\hat{P}_{r} ,\hat{R}]=-i\hbar .                                 (6.272)

Using the uncertainty relation for a pair of operators \hat{A} and \hat{B}, \Delta A\Delta B\geq \frac{1}{2} |〈[\hat{A},\hat{B}]〉|, we can write

\Delta P_{r}\Delta r \geq \frac{1}{2}\left|\left\langle [\hat {P}_{r} ,\hat{R}]\right\rangle \right| ,                                (6.273)

or

\Delta P_{r}\Delta r \geq \frac{\hbar }{2} .                           (6.274)

(b) The action of \hat{P}^{2}_{r} on \psi (\vec{r}) gives

\hat{P}^{2}_{r}\psi (\vec{r})=-\hbar ^{2} \frac{1}{r} \frac{∂}{∂r}\left[r\frac{1}{r} \frac{∂}{∂r}(r\psi )\right] =-\hbar ^{2} \frac{1}{r} \frac{∂^{2} }{∂r^{2} }(r\psi (\vec{r}));                        (6.275)

hence

\hat{P}^{2}_{r} =-\hbar ^{2} \frac{1}{r}\frac{∂^{2} }{∂r^{2} }(r).                                (6.276)

Related Answered Questions