Question 6.P.10: Consider the l = 0 states of a bound system of two quarks ha...

Consider the l = 0 states of a bound system of two quarks having the same mass m and interacting via V(r) = kr.

(a) Using the Bohr model, find the speed, the radius, and the energy of the system in the case of circular orbits. Determine also the angular frequency of the radiation generated by a transition of the system from an energy state n to m.

(b) Solve the Schrödinger equation for the central potential V(r) = kr for the two-quark system and find the expressions for the energy and the radial function R_{nl} (r) . Compare the energy with the value obtained in (a).

(c) Use the expressions derived in (a) and (b) to calculate the four lowest energy levels of a bottom–antibottom (bottomonium) quark system with k=15Ge V fm^{-1} ; the mass–energy of a bottom quark is mc^{2} =4.4GeV.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Consider the two quarks to move circularly, much like the electron and proton in a hydrogen atom; we can write the force between them as

\mu \frac{\upsilon ^{2} }{r} =\frac{dV(r)}{dr} =k,                      (6.292)

where μ = m/2 is the reduced mass. From the Bohr quantization condition of the orbital angular momentum, we have

L=\mu \upsilon r=n\hbar ,                                           (6.293)

Multiplying (6.292) by (6.293), we end up with \mu ^{2} \upsilon ^{3} =n\hbar k which yields the speed of the relative motion of the two-quark system:

\upsilon _{n} =\left(\frac{n\hbar k}{\mu ^{2}} \right) ^{1/3} .                          (6.294)

The radius can be obtained from (6.293), r_{n} =n\hbar /(\mu \upsilon _{n} ); using (6.294) this leads to

r_{n} =\left(\frac{n^{2} \hbar ^{2} }{\mu k} \right) ^{1/3}.                             (6.295)

We can obtain the total energy of the relative motion by adding the kinetic and potential energies:

E_{n} =\frac{1}{2} \mu \upsilon ^{2}_{n} +kr_{n}=\frac{3}{2} \left(\frac{n^{2} \hbar ^{2}k^{2} }{\mu } \right) ^{1/3} .               (6.296)

In deriving this we have used the relations for \upsilon _{n} and r_{n} as given by (6.294) and (6.295),
respectively. The angular frequency of the radiation generated by a transition from n to m is given by

\omega _{nm} =\frac{E_{n} -E_{m} }{\hbar } =\frac{3}{2\hbar } \left(\frac{k^{2}}{\mu \hbar } \right) ^{1/3} \left(n^{2/3} -m^{2/3} \right) .                 (6.297)

(b) The radial equation is given by (6.57):

-\frac{\hbar ^{2} }{2M} \frac{d^{2} U_{nl} (r)}{dr^{2} } + V_{eff}(r) U_{nl} (r)= E_{n} U_{nl} (r),                         (6.57)

 

-\frac{\hbar ^{2} }{2\mu } \frac{d^{2} U_{nl} (r)}{dr^{2} } +\left[kr+\frac{l(l+1)\hbar ^{2} }{2Mr^{2}} \right] U_{nl} (r)= E_{n} U_{nl} (r),            (6.298)

where U_{nl} (r)=rR_{nl} (r) . Since we are dealing with l = 0, we have

-\frac{\hbar ^{2} }{2\mu } \frac{d^{2} U_{n0} (r)}{dr^{2} } +kr U_{n0} (r)= E_{n} U_{n0} (r) ,                                      (6.299)

which can be reduced to

\frac{d^{2} U_{n0} (r)}{dr^{2} }-\frac{2\mu k}{\hbar ^{2}} \left(r-\frac{E}{k} \right) U_{n0} (r)=0.                            (6.300)

Making the change of variable x=(2\mu k/\hbar ^{2})^{1/3} (r-E/k) , we can rewrite (6.300) as

\frac{d^{2}\phi _{n}(x) }{dx^{2} } -x\phi _{n}(x)=0 .                 (6.301)

We have already studied the solutions of this equation in Chapter 4; they are given by the Airy functions Ai(x):\phi (x)=BAi(x) .The bound state energies result from the zeros of Ai(x). The boundary conditions on U_{nl} of (6.301) are U_{nl}(r=0) =0 and U_{nl}(r\rightarrow +\infty )=0 . The
second condition is satisfied by the Airy functions, since Ai(x \rightarrow +\infty )=0. The first condition corresponds to \phi [-(2\mu k/\hbar ^{2})^{1/3} E/k]=0 or to Ai[-(2\mu k/\hbar ^{2})^{1/3} E/k]=Ai(R_{n} )=0, where R_{n} are the zeros of the Airy function.

The boundary condition U_{nl}(r=0)=0 then yields a discrete set of energy levels which can be expressed in terms of the Airy roots as follows:

Ai\left[-\left(\frac{2\mu k}{\hbar ^{2}} \right) ^{1/3} \frac{E}{k} \right] =0\Longrightarrow -\left(\frac{2\mu k}{\hbar ^{2}} \right) ^{1/3} \frac{ E_{n}}{k} = R_{n};               (6.302)

hence

E_{n}=-\left(\frac{\hbar ^{2}k ^{2}}{2\mu } \right) ^{1/3} R_{n}.                                     (6.303)

The radial function of the system is given by R_{n0} (r)=(1/r) U_{n0} (r)=(B_{n}/r)Ai(x) or

R_{n0} (r)=\frac{B_{n}}{r} Ai(x)=\frac{B_{n}}{r} Ai\left[\left (\frac{2\mu k}{\hbar ^{2}} \right) ^{1/3} r+R_{n} \right] .                       (6.204)

The energy expression (6.303) has the same structure as the energy (6.296) derived from the Bohr model E^{B}_{n} =\frac{3}{2} (n^{2}\hbar ^{2}k^{2}/\mu )^{1/3} ; the ratio of the two expressions is

\frac{E_{n}}{E^{B}_{n}} =-\frac{2}{3}\frac{R_{n}}{(2n^{2} )^{1/3} } .                            (6.305)

(c) In the following calculations we will be using k=15Ge V fm^{-1},\mu c^{2}=m/2=2.2GeV and \hbar c=197.3 Me Vfm. The values of the four lowest energy levels corresponding to the expression E^{B}_{n} =\frac{3}{2} (n^{2}\hbar ^{2} k^{2}/\mu )^{1/3} , derived from the Bohr model, are

E^{B}_{1} =\frac{3}{2}\left(\frac{\hbar ^{2}k^{2}}{\mu } \right) ^{1/3} =2.38 GeV ,          E^{B}_{2} =2^{2/3} E^{B}_{1} =3.77 GeV ,          (6.306)

 

E^{B}_{3} =3^{2/3} E^{B}_{1} =4.95 GeV ,            E^{B}_{4} =4^{2/3} E^{B}_{1} =5.99 GeV .          (6.307)

Let us now calculate the exact energy levels. As mentioned in Chapter 4, the first few roots of the Airy function are given by R_{1}=-2.338, R_{2}=-4.088, R_{3}=-5.521, R_{4}=-6.787, so we can immediately obtain the first few energy levels:

E_{1}=\left(\frac{\hbar ^{2}k^{2}}{2\mu } \right) ^{1/3} R_{1} =2.94GeV,           E_{2}=\left(\frac{\hbar ^{2} k^{2}}{2\mu } \right) ^{1/3}R_{2}=5.14GeV,                   (6.308)

 

E_{3}=\left(\frac{\hbar ^{2}k^{2}}{2\mu } \right) ^{1/3}R_{3} =6.95GeV,          E_{4}=\left(\frac{\hbar ^{2}k^{2}}{2\mu } \right) ^{1/3}R_{4}=8.54GeV.                 (6.309)

Related Answered Questions