Question 6.P.11: Consider a system of two spinless particles of reduced mass ...

Consider a system of two spinless particles of reduced mass μ that is subject to a finite, central potential well

V(r)=\begin{cases} -V_{0}, & 0\leq r\leq a, \\ 0, & r>a,\end{cases}

where V_{0} is positive. The purpose of this problem is to show how to find the minimum value of V_{0} so that the potential well has one l = 0 bound state.

(a) Find the solution of the radial Schrödinger equation in both regions, 0\leq r\leq a and r > a, in the case where the particle has zero angular momentum and its energy is located in the range-V_{0}<E<0.

(b) Show that the continuity condition of the radial function at r = a can be reduced to a transcendental equation in E.

(c) Use this continuity condition to find the minimum values of V_{0} so that the system has one, two, and three bound states.

(d) Obtain the results of (c) from a graphical solution of the transcendental equation derived in (b).

(e) Use the expression obtained in (c) to estimate a numerical value of V_{0} for a deuteron nucleus with a=2\times 10^{-15} m; a deuteron nucleus consists of a neutron and a proton.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) When l = 0 and -V_{0}<E<0 the radial equation (6.56),

-\frac{\hbar ^{2} }{2M} \frac{d^{2}U_{nl}(r) }{dr^{2} } +\left [V(r)+\frac{l(l+1)\hbar ^{2}}{2Mr^{2}} \right] U_{nl}(r)=E_{n} U_{nl}(r),              (6.56)

 

-\frac{\hbar ^{2} }{2\mu } \frac{d^{2}U_{nl}(r) }{dr^{2} } +\left [\frac{l(l+1)\hbar ^{2}}{2\mu r^{2}} +V(r)\right] U_{nl}(r)=E_{n} U_{nl}(r),                (6.310)

can be written inside the well, call it region (1), as

U^{\prime \prime }_{n} (r)_{1} +k^{2}_{1} U_{n}(r)_{1} =0,          0\leq r\leq a,                       (6.311)

and outside the well, call it region (2), as

U^{\prime \prime }_{n} (r)_{2} +k^{2}_{2} U_{n}(r)_{2} =0,          r>a,                                        (6.312)

where U^{\prime \prime }_{n} (r)=d^{2}U_{n}(r)/dr^{2}, U_{n}(r)_{1}=rR_{n}(r)_{1}, U_{n}(r)_{2}=rR_{n}(r)_{2}, k_{1} =\sqrt{2\mu (V_{0}+E)/\hbar ^{2}} and k_{2}= \sqrt {-2\mu E/\hbar ^{2}} . Since U_{n}(r)_{1} must vanish at r = 0, while U_{n}(r)_{2} has to be finite at r\longrightarrow \infty, the respective solutions of (6.311) and (6.312) are given by

U_{n}(r)_{1}=A\sin (k_{1}r),            0\leq r\leq a ,                            (6.313)

 

U_{n}(r)_{2}=Be^{-k_{2}r},           r>a.                                   (6.314)

The corresponding radial functions are

R_{n}(r)_{1}=A\frac{\sin (k_{1}r)}{r} ,          R_{n}(r)_{2}=B\frac{e^{-k_{2}r}}{r}.                       (6.315)

(b) Since the logarithmic derivative of the radial function is continuous at r = a, we can write

\frac{R^{\prime }_{n} (a)_{1} }{R_{n}(a)_{1}} = \frac {R^{\prime }_{n} (a)_{2} }{R_{n}(a)_{2}}.                 (6.316)

From (6.315) we have

\frac{R^{\prime }_{n} (a)_{1} }{R_{n}(a)_{1}} =k_{1}\cot (k_{1}a)-\frac{1}{a} ,           \frac{R^{\prime }_{n} (a)_{2} }{R_{n}(a)_{2}}=-k_{2}-\frac{1}{a}.                    (6.317)

Substituting (6.317) into (6.316) we obtain

-k_{1}\cot (k_{1}a)=k_{2}                                           (6.318)

or

\sqrt{\frac{2\mu }{\hbar ^{2}}(V_{0}+E) } \cot \left[\sqrt {\frac{2\mu }{\hbar ^{2}}(V_{0}+E)} a\right] =-\sqrt{-\frac{2\mu E}{\hbar ^{2}} } ,                 (6.319)

since k_{1}=\sqrt{2\mu (V_{0}+E)/ \hbar ^{2}} and k_{2}=\sqrt{-2\mu E/\hbar ^{2}} .

(c) In the limit E\rightarrow 0, the system has very few bound states; in this limit, equation (6.319) becomes

\sqrt{\frac{2\mu V_{0}}{\hbar ^{2}} } \cot \left(\sqrt{\frac {2\mu V_{0}}{\hbar ^{2}} } a\right) =0,                          (6.320)

which leads to a\sqrt{2\mu V_{0n}/\hbar ^{2}} =(2n+1)\pi /2; hence

V_{0n}=\frac{\pi ^{2} \hbar ^{2}}{8\mu a^{2} } (2n+1)^{2},           n=0, 1, 2, 3, ….                           (6.321)

Thus, the minimum values of V_{0} corresponding to one, two, and three bound states are respectively

V_{00}=\frac{\pi ^{2} \hbar ^{2}}{8\mu a^{2} },          V_{01}=\frac{9\pi ^{2} \hbar ^{2}}{8\mu a^{2} },          V_{02}=\frac{25\pi ^{2} \hbar ^{2}}{8\mu a^{2} } .          (6.322)

(d) Using the notation \alpha =ak_{1} and \beta =ak_{2} we can, on the one hand, write

\alpha ^{2}+\beta ^{2} =\frac{2\mu a^{2} V_{0}}{\hbar ^{2}} ,                      (6.323)

and, on the other hand, reduce the transcendental equation (6.318) to

-\alpha \cot \alpha =\beta ,                                       (6.324)

since k_{1}=\sqrt{2\mu (V_{0}+E)/ \hbar ^{2}} and k_{2}=\sqrt{-2\mu E/\hbar ^{2}} .

As shown in Figure 6.7, when \pi /2<\alpha <3\pi /2, which in the limit of E\rightarrow 0 leads to

\frac{\pi ^{2} \hbar ^{2}}{8\mu a^{2} }<V_{0}<\frac{9\pi ^{2} \hbar ^{2}}{8\mu a^{2} },                              (6.325)

there exists only one bound state, since the circle intersects only once with the curve -\alpha \cot \alpha.

Similarly, there are two bound states if 3\pi /2<\alpha <5\pi /2 or

\frac{9\pi ^{2} \hbar ^{2}}{8\mu a^{2} }<V_{0}<\frac{25\pi ^{2} \hbar ^{2}}{8\mu a^{2} },                                (6.326)

and three bound states if 5\pi /2<\alpha <7\pi /2:

\frac{25\pi ^{2} \hbar ^{2}}{8\mu a^{2} }<V_{0}<\frac{49\pi ^{2} \hbar ^{2}}{8\mu a^{2} }.                                 (6.327)

(e) Since m_{p} c^{2} \backsimeq 938MeV and m_{n} c^{2} \backsimeq 940MeV, the reduced mass of the deuteron is given by \mu c^{2}=(m_{p} c^{2})(m_{n} c^{2}) /(m_{p} c^{2}+m_{n} c^{2}) \backsimeq 469.5MeV. Since a=2\times 10^{-15} m the minimum value of V_{0} corresponding to one bound state is

V_{0}=\frac{\pi ^{2} \hbar ^{2}}{8\mu a^{2} }=\frac{\pi ^{2}(\hbar c)^{2} }{8(\mu c^{2})a^{2}} =\frac{\pi ^{2}(197MeV fm)^{2}}{8(469.5MeV)(2\times 10^{-15} m)^{2}} \backsimeq 25.5MeV .            (6.328)

figure (6.7)

Related Answered Questions