Question 6.P.12: Calculate 〈nl | P^4 | nl〉 in a stationary state | nl〉 of ...

Calculate 〈nl|\hat{P}^{4}|nl 〉 in a stationary state |nl 〉 of the hydrogen atom.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To calculate 〈nl|\hat{P}^{4}|nl 〉 we may consider expressing \hat{P}^{4} in terms of the hydrogen’s Hamiltonian. Since \hat{H}=\hat{P}^{2}/(2m_{e} )-e^{2} /r we have \hat{P}^{2}=2m_{e}(\hat{H}+e^{2} /r) : hence

〈nl|\hat{P}^{4}|nl 〉=(2m_{e} )^{2} \left\langle nl|\left(\hat{H} +\frac{e^{2}}{r} \right) ^{2}|nl \right\rangle

 

=(2m_{e} )^{2}\left\langle nl|\hat{H}^{2}+\hat{H}\frac {e^{2}}{r}+\frac{e^{2}}{r}\hat{H}+\frac{e^{4}}{r^{2}}|nl \right \rangle

 

=(2m_{e} )^{2}\left[E^{2}_{n}+E_{n} \left\langle nl|\frac {e^{2}}{r}|nl\right\rangle +\left\langle nl|\frac{e^{2}}{r}|nl\right \rangle E_{n}+ \left\langle nl|\frac{e^{4}}{r^{2}}|nl\right\rangle \right] ,             (6.329)

where we have used the fact that |nl 〉 is an eigenstate of \hat{H} :\hat{H}|nl 〉=E_{n}|nl 〉 with E_{n}=-e^{2}/(2a_{0} n^{2} )=-13.6eV/n^{2}. The expectation values of 1/r and 1/r^{2} are given by (6.182) and (6.183), 〈nl |r^{-1}|nl 〉=1/(n^{2}a_{0}) and 〈nl|r^{-2}|nl 〉=2[n^{3}(2l+1)a^{2}_{0}];

〈nl|r^{-1}|nl 〉=\frac{1}{n^{2}a_{0}} ,                    (6.182)

〈nl|r^{-2}|nl 〉=\frac{2}{n^{3}(2l+1)a^{2}_{0} } ,                (6.183)

we can thus rewrite (6.329) as

〈nl|\hat{P}^{4}|nl 〉=(2m_{e} )^{2} \left[E^{2}_{n}+2E_{n} \left\langle nl|\frac{e^{2}}{r}|nl\right\rangle + \left\langle nl|\frac {e^{4}}{r^{2}}|nl\right\rangle\right]

 

=(2m_{e} E_{n})^{2}\left[1+\frac{2e^{2}}{E_{n}}\frac{1}{n^{2}a_{0}}+\frac{e^{4}}{E^{2}_{n}} \frac{2}{n^{3}(2l+1) a^{2}_{0} } \right]

 

=(2m_{e} E_{n})^{2}\left[1-4+\frac{8n}{2l+1} \right] ;                                 (6.330)

in deriving the last relation we have used E_{n}=-e^{2}/(2a_{0} n^{2}) . Now, since a_{0}=\hbar ^{2} /(m_{e}e^{2}) , the energy E_{n} becomes E_{n}=-e^{2} /(2a_{0}n^{2})=-m_{e}e^{4}/(2\hbar ^{2}n^{2}) which, when inserted into (6.330), leads to

〈nl|\hat{P}^{4}|nl 〉=\frac{m^{4}_{e} e^{8}}{\hbar ^{4}n^{4}} \left[\frac{8n}{2l+1} -3\right] .                                      (6.331)

Related Answered Questions