Use the Pauli matrices \sigma _{x} =\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right) , \sigma _{y} =\left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right), and \sigma _{z} =\left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right), to show that
(a) e^{-i\alpha \sigma _{x}} =I\cos \alpha -i\sigma _{x}\sin \alpha , where I is the unit matrix,
(b) e^{i\alpha \sigma _{x}}\sigma _{z}e^{-i\alpha \sigma _{x}} =\sigma _{z}\cos (2\alpha )+\sigma _{y} \sin (2\alpha ).