Question 7.P.6: Work out the coupling of the isospins of a pion–nucleon syst...

Work out the coupling of the isospins of a pion–nucleon system and infer the various states of this system.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since the isospin of a pion meson is 1 and that of a nucleon is \frac {1}{2}, the total isospin of a pion– nucleon system can be obtained by coupling the isospins t_{1} =1 and t_{2} =\frac{1}{2}. The various values of the total isospin lie in the range \left|t_{1} -t_{2} \right| <T<t_{1} +t_{2} ; hence they are given by T=\frac{3}{2},\frac{1}{2}.

The coupling of the isospins t_{1} =1 and t_{2} = \frac{1}{2} is analogous to the addition of an orbital angular momentum l = 1 and a spin \frac {1}{2}; the expressions pertaining to this coupling are listed in (7.206) to (7.211).

\left|\frac{3}{2},\frac{3}{2}\right\rangle =\left|1,\frac{1}{2};1, \frac{1}{2}\right\rangle ,                          (7.206)

 

\left|\frac{3}{2},\frac{1}{2}\right\rangle =\sqrt{\frac{2}{3} } \left|1,\frac{1}{2};0,\frac{1}{2}\right\rangle +\frac{1}{\sqrt{3} } \left |1,\frac{1}{2};1,-\frac{1}{2}\right\rangle ,                        (7.207)

 

\left|\frac{3}{2},-\frac{1}{2}\right\rangle =\frac{1}{\sqrt{3} }\left|1,\frac{1}{2};-1,\frac{1}{2}\right\rangle + \sqrt{\frac{2}{3} }\left |1,\frac{1}{2};0,-\frac{1}{2}\right\rangle ,                        (7.208)

 

\left|\frac{3}{2},-\frac{3}{2}\right\rangle =\left|1,\frac{1}{2}; -1,-\frac{1}{2}\right\rangle .                                   (7.209)

 

\left|\frac{1}{2},\frac{1}{2}\right\rangle =\sqrt{\frac{2}{3} } \left|1,\frac{1}{2};1,-\frac{1}{2}\right\rangle -\frac{1}{\sqrt{3} } \left |1,\frac{1}{2};0,\frac{1}{2}\right\rangle ,                      (7.210)

 

\left|\frac{1}{2},-\frac{1}{2}\right\rangle =\frac{1}{\sqrt{3} } \left|1,\frac{1}{2};0,-\frac{1}{2}\right\rangle – \sqrt{\frac{2}{3} }\left |1,\frac{1}{2};-1,\frac{1}{2}\right\rangle .                      (7.211)

Note that there are three different π-mesons:

|1,1 〉=|\pi ^{+} 〉,           |1,0 〉=|\pi ^{0} 〉,           |1,-1 〉=|\pi ^{-} 〉,                   (7.388)

and two nucleons, a proton and a neutron:

\left|\frac{1}{2},\frac{1}{2}\right\rangle=|p 〉,         \left|\frac{1}{2},-\frac{1}{2}\right\rangle =|n 〉.                          (7.289)

By analogy with (7.206) to (7.211) we can write the states corresponding to T=\frac{3}{2} as

\left|\frac{3}{2},\frac{3}{2}\right\rangle=|1,1 〉\left|\frac{1}{2}, \frac{1}{2}\right\rangle=|\pi ^{+} 〉|p 〉 ,                        (7.390)

 

\left|\frac{3}{2},\frac{1}{2}\right\rangle =\sqrt{\frac{2}{3} } |1,0 〉\left|\frac{1}{2},\frac{1}{2}\right\rangle+\frac{1}{\sqrt{3} }|1,1 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3} }|\pi ^{0} 〉|p 〉+\frac{1}{\sqrt{3} }|\pi ^{+} 〉 |n 〉 ,      (7.391)

 

\left|\frac{3}{2},-\frac{1}{2}\right\rangle =\frac{1}{\sqrt{3} } |1,-1 〉\left|\frac{1}{2},\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3} }|1,0 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3} }|\pi ^{-} 〉|p 〉+\sqrt{\frac{2}{3} }|\pi ^{0} 〉|n 〉 ,      (7.392)

 

\left|\frac{3}{2},-\frac{3}{2}\right\rangle=|1,-1 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|\pi ^{-} 〉|n 〉 ,                  (7.393)

and those corresponding to T=\frac{1}{2} as

\left|\frac{1}{2},\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3} }|1,1 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{3} }|1,0 〉\left |\frac{1}{2},\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3} }|\pi ^{+} 〉|n 〉-\frac{1}{\sqrt{3} }|\pi ^{0} 〉 |p 〉 ,      (7.394)

 

\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3} } |1,0 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3} }|1,-1 〉\left|\frac{1}{2},\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3} }|\pi ^{0} 〉|n 〉-\sqrt{\frac{2}{3} } |\pi ^{-} 〉|p 〉 .     (7.395)

Related Answered Questions

To find the matrix of d^{(1)} (\beta )=e^{-...