Question 7.P.9: Find the rotation matrix d^(1) corresponding to j = 1.

Find the rotation matrix d^{(1)} corresponding to j = 1.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To find the matrix of d^{(1)} (\beta )=e^{-i\beta \hat{J} _{y}/ \hbar } for j = 1, we need first to find the matrix representation of \hat{J} _{y} within the joint eigenstates \left\{|j,m 〉\right\} of \hat{\vec{J} }^{2} and \hat{J} _{z}. Since the basis of j = 1 consists of three states |1,-1 〉,|1 ,0 〉,|1,1 〉, the matrix representing \hat{J} _{y} within this basis is given by

J _{y}=\frac{\hbar }{2} \left(\begin{matrix} 〈1,1|\hat{J} _{y} |1,1 〉 & 〈1,1|\hat{J} _{y}|1,0 〉 & 〈1,1|\hat{J} _{y}|1,-1 〉 \\ 〈1,0|\hat{J} _{y}|1,1 〉 & 〈1,0|\hat{J} _{y}|1,0 〉 & 〈1,0|\hat{J} _{y}|1,-1 〉 \\ 〈1,-1| \hat{J} _{y} |1,1 〉 & 〈1,-1|\hat{J} _{y}|1,0 〉 & 〈1,-1|\hat{J} _{y}|1,-1 〉 \end{matrix} \right)

 

=\frac{i\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{matrix} \right) .                              (7.415)

We can easily verify that J^{3}_{y} =J_{y} :

J^{2}_{y} =\frac{\hbar ^{2} }{2} \left(\begin{matrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{matrix} \right) ,          J^{3}_{y} =\frac{i \hbar ^{3}}{\sqrt{2} } \left(\begin{matrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{matrix} \right)=\hbar ^{2} J_{y}.                (7.416)

We can thus infer

J^{2n}_{y} =\hbar ^{2n-2} J^{2}_{y}          (n>0),           J^{2n+1}_{y} =\hbar ^{2n}J_{y}.                            (7.417)

Combining these two relations with

e^{-i\beta \hat{J} _{y}/\hbar } =\sum\limits_{n=0}^{\infty } \frac{1}{n!} \left(-\frac{i\beta }{\hbar } \right) ^{n} J^{n}_{y}

 

=\sum\limits_{n=0}^{\infty } \frac{1}{(2n)!} \left(-\frac{i\beta }{\hbar } \right) ^{2n} J^{2n}_{y} + \sum\limits_{n=0}^{\infty } \frac{1}{(2n+1)!} \left(-\frac{i\beta }{\hbar } \right) ^{2n+1} J^{2n+1}_{y} ,         (7.418)

we obtain

e^{-i\beta \hat{J} _{y}/\hbar } =\hat{I} +\left(\frac{\hat{J} _{y}}{\hbar } \right) ^{2} \sum\limits_{n=0}^{\infty }\frac{(-1)^{n} }{(2n)!} (\beta )^{2n} -i\frac{\hat{J} _{y}}{\hbar } \sum \limits_{n=0} ^{\infty }\frac{(-1)^{n} }{(2n+1)!} \beta ^{2n+1}

 

=\hat{I} +\left(\frac{\hat{J} _{y}}{\hbar } \right) ^{2}\left [\sum\limits_{n=0}^{\infty }\frac{(-1)^{n} }{(2n)!}(\beta )^{2n}-1 \right] -i\frac{\hat{J} _{y}}{\hbar } \sum\limits_{n=0}^{\infty }\frac{(-1)^{n} }{(2n+1)!} \beta ^{2n+1},          (7.419)

where \hat{I} is the 3\times 3 unit matrix. Using the relations \sum\limits_{n=0}^{\infty } [(-1)^{n}/(2n) !](\beta )^{2n}=\cos \beta and \sum\limits_{n=0} ^{\infty } [(-1)^{n}/(2n+1)!](\beta )^{2n+1}=\sin \beta , we may write

e^{-i\beta \hat{J} _{y}/\hbar } =\hat{I} +\left(\frac{\hat{J} _{y}}{\hbar } \right) ^{2} [\cos \beta -1]-i \frac{\hat{J} _{y}}{\hbar } \sin \beta .                   (7.420)

Inserting now the matrix expressions for J_{y} and J^{2}_{y} as listed in (7.415) and (7.416), we obtain

e^{-i\beta \hat{J} _{y}/\hbar } =\hat{I} +\frac{1}{2} \left (\begin{matrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{matrix} \right) (\cos \beta -1)-i\frac{i}{\sqrt{2} } \left(\begin{matrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{matrix} \right) \sin \beta                  (7.421)

or

d^{(1)} (\beta )=\left(\begin{matrix} d^{(1)}_{11} & d^{(1)}_{1,0} & d^{(1)}_{1-1} \\ d^{(1)}_{01} & d^{(1)}_{00} & d^{(1)}_{0-1} \\ d^{(1)}_{-11} & d^{(1)}_{-10} & d^{(1)}_{-1-1} \end {matrix} \right) =\left(\begin{matrix} \frac{1}{2}(1+\cos \beta ) & -\frac{1}{\sqrt{2} }\sin \beta & \frac{1}{2}(1-\cos \beta ) \\ \frac{1}{\sqrt{2} }\sin \beta & \cos \beta & -\frac{1}{\sqrt{2} }\sin \beta \\ \frac{1}{2}(1-\cos \beta ) & \frac{1}{\sqrt{2} }\sin \beta & \frac{1}{2}(1+\cos \beta ) \end{matrix} \right) .        (7.422)

Since \frac{1}{2}(1+\cos \beta )=\cos ^{2} (\beta /2) and \frac{1}{2}(1-\cos \beta )=\sin ^{2} (\beta /2) , we have

d^{(1)} (\beta )=e^{-i\beta \hat{J} _{y}/\hbar }=\left(\begin {matrix} \cos ^{2} (\beta /2) & -\frac{1}{\sqrt{2} }\sin (\beta ) & \sin ^{2} (\beta /2) \\ \frac{1}{\sqrt{2} }\sin (\beta ) & \cos (\beta ) & -\frac{1}{\sqrt{2} }\sin (\beta ) \\ \sin ^{2} (\beta /2) & \frac{1}{\sqrt{2} }\sin (\beta ) & \cos ^{2} (\beta /2) \end{matrix} \right) .                (7.423)

This method becomes quite intractable when attempting to derive the matrix of d^{(j)} (\beta ) for large values of j. In Problem 7.10 we are going to present a simplermethod for deriving d^{(j)} (\beta ) for larger values of j; this method is based on the addition of angular momenta.

Related Answered Questions