Question 4.14: The diode current is 0.6 mA when the applied voltage is 400 ...

The diode current is 0.6 mA when the applied voltage is 400 mV, and 20 mA when the applied voltage is 500 mV. Determine η. Assume \frac{kT}{q}= 25 mV

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The diode current,                  I=I_{o}\left(e^{\frac{qV }{\eta KT} }-1 \right)

Therefore,                     0.6\times 10^{-3} =I_{o}\left(e^{\frac{qV }{\eta KT} }-1 \right)=I_{o}e^{\frac{qV }{\eta KT} }

=I_{o}e^{\frac{400 }{25\eta} }=I_{o}e^{\frac{16 }{\eta} }         (1)

Also,                               20\times 10^{-3}=I_{o}e^{\frac{500 }{25\eta} }=I_{o}e^{\frac{20 }{\eta} }                               (2)

Dividing Eq. (2) by Eq. (1), we get

\frac{20\times 10^{-3} }{0.6\times 10^{-3} } =\frac{I_{o}e^{\frac{20 }{\eta} }}{I_{o}e^{\frac{16 }{\eta} }}

Therefore,                             \frac{100}{3} =e^{\frac{4}{\eta } }

Taking natural logarithms on both sides, we get

\log _{e}\frac{100}{3} =\frac{4}{\eta }

3.507=\frac{4}{\eta }

Therefore,                                      \eta=\frac{4}{3.507} =1.14

Related Answered Questions