SAE 10W oil at 20°C flows at 1.1 m^3/h through a horizontal pipe with d = 2 cm and L = 12 m. Find (a) the average velocity, (b) the Reynolds number, (c) the pressure drop, and (d) the power required.
SAE 10W oil at 20°C flows at 1.1 m^3/h through a horizontal pipe with d = 2 cm and L = 12 m. Find (a) the average velocity, (b) the Reynolds number, (c) the pressure drop, and (d) the power required.
• Assumptions: Laminar, steady, Hagen-Poiseuille pipe flow.
• Approach: The formulas of Eqs. (4.138) are appropriate for this problem. Note that R = 0.01 m.
V_{max}=v_z(r=0)=\left(-\frac{dp}{dz}\right)\frac{R^2}{4\mu}V_{avg}=\frac{1}{A}\int{v_z dA}=\frac{1}{\pi R^2}\int_0^R{V_{max}\left(1-\frac{r^2}{R^2}\right)2\pi r dr}=\frac{V_{max}}{2}=\left(-\frac{dp}{dz}\right)\frac{R^2}{8\mu}
Q=\int{v_z dA}=\int_0^R{V_{max}\left(1-\frac{r^2}{R^2}\right)2\pi r dr}=\pi R^2 V_{avg}=\frac{4R^4}{8\mu}\left(-\frac{dp}{dz}\right)=\frac{\pi R^4 \Delta p}{8\mu L}
\tau_{wall}=\mu\left|\frac{\partial v_z}{\partial r}\right|_{r=R}=\frac{4\mu V_{avg}}{R}=\frac{R}{2}\left(-\frac{dp}{dz}\right)=\frac{R}{2}\frac{\Delta p}{L} (4.138)
• Property values: From Table A.3 for SAE 10W oil, \rho = 870 kg/m^3 and µ = 0.104 kg/(m-s).
Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F) | ||||||
Liquid | \rho, kg/m^3 | µ, kg/(m·s) | Y, N/m^* | p_{\nu}, N/m^2 | Bulk modulus K, N/m^2 |
Viscosity parameter C^{\dagger} |
Ammonia | 608 | 2.20 E-4 | 2.13 E-2 | 9.10 E+5 | 1.82 E+9 | 1.05 |
Benzene | 881 | 6.51 E-4 | 2.88 E-2 | 1.01 E+4 | 1.47 E+9 | 4.34 |
Carbon tetrachloride | 1590 | 9.67 E-4 | 2.70 E-2 | 1.20 E+4 | 1.32 E+9 | 4.45 |
Ethanol | 789 | 1.20 E-3 | 2.28 E-2 | 5.73 E+3 | 1.09 E+9 | 5.72 |
Ethylene glycol | 1117 | 2.14 E-2 | 4.84 E-2 | 1.23 E+1 | 3.05 E+9 | 11.7 |
Freon 12 | 1327 | 2.62 E-4 | – | – | 7.95 E+8 | 1.76 |
Gasoline | 680 | 2.92 E-4 | 2.16 E-2 | 5.51 E+4 | 1.3 E+9 | 3.68 |
Glycerin | 1260 | 1.49 | 6.33 E-2 | 1.43 E-2 | 4.35 E+9 | 28.0 |
Kerosene | 804 | 1.92 E-3 | 2.8 E-2 | 3.11 E+3 | 1.41 E+9 | 5.56 |
Mercury | 13,550 | 1.56 E-3 | 4.84 E-1 | 1.13 E-3 | 2.85 E+10 | 1.07 |
Methanol | 791 | 5.98 E-4 | 2.25 E-2 | 1.34 E+4 | 1.03 E+9 | 4.63 |
SAE 10W oil | 870 | 1.04 E- 1^{\ddagger} | 3.6 E-2 | – | 1.31 E+9 | 15.7 |
SAE 10W30 oil | 876 | 1.7 E-1^{\ddagger} | – | – | – | 14.0 |
SAE 30W oil | 891 | 2.9 E-1^{\ddagger} | 3.5 E-2 | – | 1.38 E+9 | 18.3 |
SAE 50W oil | 902 | 8.6 E-1^{\ddagger} | – | – | – | 20.2 |
Water | 998 | 1.00 E-3 | 7.28 E-2 | 2.34 E+3 | 2.19 E+9 | Table A.1 |
Seawater (30%) | 1025 | 1.07 E-3 | 7.28 E-2 | 2.34 E+3 | 2.33 E+9 | 7.28 |
^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression
with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.
Table A.1 | Viscosity and Density of Water at 1 atm | ||||||
T,°C | \rho, kg/m^3 | µ, N·s/m^2 | \nu, m^2/s | T,°F | \rho, slug/ft^3 | \mu, Ib\cdot s/ft^2 | \nu, ft^2/s |
0 | 1000 | 1.788 E-3 | 1.788 E-6 | 32 | 1.94 | 3.73 E-5 | 1.925 E-5 |
10 | 1000 | 1.307 E-3 | 1.307 E-6 | 50 | 1.94 | 2.73 E-5 | 1.407 E-5 |
20 | 998 | 1.003 E-3 | 1.005 E-6 | 68 | 1.937 | 2.09 E-5 | 1.082 E-5 |
30 | 996 | 0.799 E-3 | 0.802 E-6 | 86 | 1.932 | 1.67 E-5 | 0.864 E-5 |
40 | 992 | 0.657 E-3 | 0.662 E-6 | 104 | 1.925 | 1.37 E-5 | 0.713 E-5 |
50 | 988 | 0.548 E-3 | 0.555 E-6 | 122 | 1.917 | 1.14 E-5 | 0.597 E-5 |
60 | 983 | 0.467 E-3 | 0.475 E-6 | 140 | 1.908 | 0.975 E-5 | 0.511 E-5 |
70 | 978 | 0.405 E-3 | 0.414 E-6 | 158 | 1.897 | 0.846 E-5 | 0.446 E-5 |
80 | 972 | 0.355 E-3 | 0.365 E-6 | 176 | 1.886 | 0.741 E-5 | 0.393 E-5 |
90 | 965 | 0.316 E-3 | 0.327 E-6 | 194 | 1.873 | 0.660 E-5 | 0.352 E-5 |
100 | 958 | 0.283 E-3 | 0.295 E-6 | 212 | 1.859 | 0.591 E-5 | 0.318 E-5 |
Suggested curve fits for water in the range 0 ≤ T ≤ 100°C: | |||||||
\rho(kg/m^3)\approx 1000-0.0178 |T^{\circ}C-4^{\circ}C|^{1.7} \pm 0.2 \% | |||||||
\ln \frac{\mu}{\mu_0}\approx 1.704-5.306_z+{7.003_z}^2 | |||||||
z=\frac{273 K}{T K} \mu_0=1.788E-3 kg/(m\cdot s) |
• Solution steps: The average velocity follows easily from the flow rate and the pipe area:
V_{avg}=\frac{Q}{\pi R^2}=\frac{(1.1/3600) m^3/s}{\pi(0.01 m)^2}=0.973\frac{m}{s}We had to convert Q to m^3/s. The (diameter) Reynolds number follows from the average velocity:
Re_d=\frac{\rho V_{avg}d}{\mu}=\frac{(870 kg/m^3)(0.973 m/s)(0.02 m)}{0.104 kg/(m-s)}=163This is less than the “transition” value of 2100; so the flow is indeed laminar, and the formulas are valid. The pressure drop is computed from the third of Eqs. (4.138):
Q=\frac{1.1}{3600}\frac{m^3}{s}=\frac{\pi R^4 \Delta p}{8\mu L}=\frac{\pi(0.01 m)^4 \Delta p}{8(0.104 kg/(m-s))(12 m)} solve for Δp = 97,100 Pa
When using SI units, the answer returns in pascals; no conversion factors are needed. Finally, the power required is the product of flow rate and pressure drop:
Power=Q \Delta p=\left(\frac{1.1}{3600} m^3/s\right)(97,100 N/m^2)=29.7\frac{N-m}{s}=29.7 W• Comments: Pipe flow problems are straightforward algebraic exercises if the data are compatible. Note again that SI units can be used in the formulas without conversion factors.