Question 14.4: A 17-tooth 20° pressure angle spur pinion rotates at 1800 re...

A 17-tooth 20° pressure angle spur pinion rotates at 1800 rev/min and transmits 4 hp to a 52-tooth disk gear. The diametral pitch is 10 teeth/in, the face width 1.5 in, and the quality standard is No. 6. The gears are straddle-mounted with bearings immediately adjacent. The pinion is a grade 1 steel with a hardness of 240 Brinell tooth surface and through-hardened core. The gear is steel, through-hardened also, grade 1 material, with a Brinell hardness of 200, tooth surface and core. Poisson’s ratio is 0.30, J_{P} = 0.30, J_{G} = 0.40, and Young’s modulus is 30(10^{6}) psi. The loading is smooth because of motor and load. Assume a pinion life of 10^{8} cycles and a reliability of 0.90, and use Y_{N} = 1.3558N^{−0.0178}, Z_{N} = 1.4488N^{−0.023}. The tooth profile is uncrowned. This is a commercial enclosed gear unit.
(a) Find the factor of safety of the gears in bending.
(b) Find the factor of safety of the gears in wear.
(c) By examining the factors of safety, identify the threat to each gear and to the mesh.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

There will be many terms to obtain so use Figs. 14–17 and 14–18 as guides to what is needed.

d_{P} = N_{P}/P_{d} = 17/10 = 1.7  in      d_{G} = 52/10 = 5.2   in

V =\frac{πd_{P}n_{P}}{12} =\frac{π(1.7)1800}{12} = 801.1  ft/min

W^{t} =\frac{33  000  H}{V} =\frac{33  000(4)}{801.1} = 164.8  lbf

Assuming uniform loading, K_{o}= 1. T_{o} evaluate K_{v} , from Eq. (14–28) with a quality number Q_{v} = 6,

A = 50 + 56(1 − B)
B = 0.25(12 − Q_{v})^{2/3}                            (14–28)

B = 0.25(12 − 6)^{2/3} = 0.8255
A = 50 + 56(1 − 0.8255) = 59.77

Then from Eq. (14–27) the dynamic factor is

K_{v} =\begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^{B} & V  in  ft/min \\ \left(\frac{A + \sqrt{200V}}{A}\right)^{B} & V  in  m/s \end{cases}                     (14-27)

K_{v} =\left( \frac{59.77 + \sqrt{801.1}}{59.77}\right)^{0.8255}= 1.377

To determine the size factor, K_{s} , the Lewis form factor is needed. From Table 14–2, with N_{P} = 17 teeth, Y_{P} = 0.303. Interpolation for the gear with N_{G} = 52 teeth yields Y_{G} = 0.412. Thus from Eq. (a) of Sec. 14–10, with F = 1.5 in,

K_{s} =\frac{1}{k_{b}} = 1.192 \left(\frac{F\sqrt{Y}}{P}\right)^{0.0535}                         (a)

(K_{s})_{P} = 1.192 \left(\frac{1.5\sqrt{0.303}}{10}\right)^{0.0535}= 1.043
(K_{s})_{G} = 1.192 \left(\frac{1.5\sqrt{0.412}}{10}\right)^{0.0535}= 1.052

Table 14–2
Values of the Lewis Form Factor Y (These Values Are for a Normal Pressure Angle of 20°, Full-Depth Teeth, and a Diametral Pitch of Unity in the Plane of Rotation)

Y Number of Teeth Y Number of Teeth
0.353 28 0.245 12
0.359 30 0.261 13
0.371 34 0.277 14
0.384 38 0.290 15
0.397 43 0.296 16
0.409 50 0.303 17
0.422 60 0.309 18
0.435 75 0.314 19
0.447 100 0.322 20
0.460 150 0.328 21
0.472 300 0.331 22
0.480 400 0.337 24
0.485 Rack 0.346 26

The load distribution factor K_{m} is determined from Eq. (14–30), where five terms are needed. They are, where F = 1.5 in when needed:

K_{m} = C_{mf} = 1 + C_{mc}(C_{p f} C_{pm} + C_{ma}C_{e})                 (14–30)

Uncrowned, Eq. (14–30): C_{mc} = 1,

Eq. (14–32): C_{p f} = 1.5/[10(1.7)] − 0.0375 + 0.0125(1.5) = 0.0695

C_{p f} =\begin{cases} \frac{F}{10d} − 0.025 & F ≤ 1  in \\\frac{F}{10d} − 0.0375 + 0.0125F & 1 < F ≤ 17  in\\ \frac{F}{10d} − 0.1109 + 0.0207F − 0.000 228F^{2}&17 < F ≤ 40  in \end{cases}                    (14-32)

Bearings immediately adjacent, Eq. (14–33): C_{pm} = 1

C_{p m} =\begin{cases} 1&  \text{for  straddle-mounted  pinion  with } S_{1}/S < 0.175 \\ 1.1 & \text{ for  straddle-mounted  pinion  with } S_{1}/S ≥ 0.175 \end{cases}                                  (14.33)

Commercial enclosed gear units (Fig. 14–11): C_{ma} = 0.15

Eq. (14–35): C_{e} = 1

C_{e} =\begin{cases}0.8 & \text{for  gearing  adjusted  at  assembly,  or  compatibility is  improved  by  lapping,  or  both } \\ 1 &  \text{for  all  other  conditions } \end{cases}                    (14–35)

Thus,

K_{m} = 1 + C_{mc}(C_{p f} C_{pm} + C_{ma}C_{e}) = 1 + (1)[0.0695(1) + 0.15(1)] = 1.22

Assuming constant thickness gears, the rim-thickness factor K_{B} = 1. The speed ratio is m_{G} = N_{G}/N_{P} = 52/17 = 3.059. The load cycle factors given in the problem statement, with N(pinion) = 10^{8} cycles and N(gear) = 10^{8}/m_{G} = 10^{8}/3.059 cycles, are

(Y_{N} )_{P} = 1.3558(10^8)^{−0.0178} = 0.977
(Y_{N} )_{G} = 1.3558(10^8/3.059)^{−0.0178} = 0.996

From Table 14.10, with a reliability of 0.9, K_{R} = 0.85. From Fig. 14–18, the temperature and surface condition factors are K_{T} = 1 and C_{f} = 1. From Eq. (14–23), with m_{N} = 1 for spur gears,

I =\begin{cases} \frac{cos  \phi_{t}  sin  \phi_{t}}{2m_{N}} \frac{m_{G}}{m_{G} + 1} & external  gears\\\frac{cos  \phi_{t}  sin  \phi_{t}}{2m_{N}}\frac{m_{G}}{m_{G} − 1} & internal  gears\end{cases}             (14–23)

I =\frac{cos  20° sin  20°}{2} \frac{3.059}{3.059 + 1} = 0.121

Table 14–10
Reliability Factors K_{R} (Y_{Z} ) Source: ANSI/AGMA 2001-D04.

K_{R} (Y_{Z} ) Reliability
1.50 0.9999
1.25 0.999
1.00 0.99
0.85 0.90
0.70 0.50
From Table 14–8, C_{p} = 2300\sqrt{psi}.
Table 14–8
Elastic Coefficient C_{p} (Z_{E}),\sqrt{psi}(\sqrt{MPa}) Source: AGMA 218.01
Gear Material and Modulus of Elasticity E_{G}, lbf/in^{2} (MPa)* Pinion Modulus of Elasticity E_{p} psi (MPa)* Pinion Material
Tin Bronze

16 × 10^{6}

(1.1 ×10^{5})

Aluminum Bronze

17.5 × 10^{6}

(1.2 × 10^{5})

Cast Iron

22 × 10^{6}

(1.5× 10^{5})

Nodular Iron

24 × 10^{6}

(1.7 × 10^{5})

Malleable Iron

25 × 10^{6}

(1.7 × 10^{5})

Steel

30 × 10^{6}

(2 ×10^{5})

1900 1950 2100 2160 2180 2300 30 × 10^{6} Steel
(158) (162) (174) (179) (181) (191) (2 × 10^{5})
1850 1900 2020 2070 2090 2180 25 × 10^{6} Malleable iron
(154) (158) (168) (172) (174) (181) (1.7 × 10^{5})
1830 1880 2000 2050 2070 2160 24 × 10^{6} Nodular iron
(152) (156) (166) (170) (172) (179) (1.7 × 10^{5})
1800 1850 1960 2000 2020 2100 22 × 10^{6} Cast iron
(149) (154) (163) (166) (168) (174) (1.5 × 10^{5})
1700 1750 1850 1880 1900 1950 17.5 ×10^{6} Aluminum bronze bronze
(141) (145) (154) (156) (158) (162) (1.2 × 10^{5})
1650 1700 1800 1830 1850 1900 10^{6} Tin bronze
(137) (141) (149) (152) (154) (158) (1.1 × 10^{5})

Poisson’s ratio=0.30.
^∗ When more exact values for modulus of elasticity are obtained from roller contact tests, they may be used.

Next, we need the terms for the gear endurance strength equations. From Table 14–3, for grade 1 steel with H_{BP} = 240  and  H_{BG} = 200, we use Fig. 14–2, which gives

(S_{t} )_{P} = 77.3(240) + 12 800 = 31 350  psi
(S_{t} )_{G} = 77.3(200) + 12 800 = 28 260  psi

Table 14–3
Repeatedly Applied Bending Strength St at 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Allowable Bending Stress Number S_{t},^{2}

psi

Minimum Surface Hardness^{1} Heat Treatment Material Designation
Grade 3 Grade 2 Grade 1
__ See Fig. 14–2 See Fig. 14–2 See Fig. 14–2 Through-hardened Steel^{3}
__ 55 000 45 000 See Table 8* Flame^{4} or induction hardened^{4} with type
A pattern^{5}
__ 22 000 22 000 See Table 8* Flame^{4} or induction hardened^{4} with type
B pattern^{5}
75 000 65 000 or 70 000^{6} 55 000 See Table 9* Carburized and hardened
__ See Fig. 14–3 See Fig. 14–3 83.5 HR15N itrided^{4,7} (through-hardened steels)
See Fig. 14–4 See Fig. 14–4 See Fig. 14–4 87.5 HR15N Nitrided^{4,7} Nitralloy 135M,Nitralloy N, and
2.5% chrome
(no aluminum)

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–7.
1  Hardness to be equivalent to that at the root diameter in the center of the tooth space and face width.
2  See tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3  The steel selected must be compatible with the heat treatment process selected and hardness required.
4  The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
5  See figure 12 for type A and type B hardness patterns.
6  If bainite and microcracks are limited to grade 3 levels, 70,000 psi may be used.
7  The overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be investigated before proceeding with the design. [7]
*  Tables 8 and 9 of ANSI/AGMA 2001-D04 are comprehensive tabulations of the major metallurgical factors affecting S_{t}  and  S_{c} of flame-hardened and induction-hardened (Table 8) and carburized and hardened (Table 9) steel gears.


Similarly, from Table 14–6, we use Fig. 14–5, which gives

(S_{c})_{P} = 322(240) + 29  100 = 106  400  psi
(S_{c})_{G} = 322(200) + 29  100 = 93  500  psi

Table 14–6
Repeatedly Applied Contact Strength S_{c}  at  10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Allowable Contact Stress Number,^{2} S_{c}, psi Minimum Surface Hardness^{1} Heat Treatment Material Designation
Grade 3 Grade 2 Grade 1
__ See Fig. 14–5 See Fig. 14–5 See Fig. 14–5 Through hardened^{4} Steel^{3}
__ 190 000 170 000 50 HRC Flame^{5} or induction
__ 195 000 175 000 54 HRC hardened^{5}
275 000 225 000 180 000 See Table 9∗ Carburized and hardened^{5}
175 000 163 000 150 000 83.5 HR15N Nitrided^{5} (through
180 000 168 000 155 000 84.5 HR15N hardened steels)
189 000 172 000 155 000 87.5 HR15N Nitrided^{5} 2.5% chrome (no aluminum)
195 000 183 000 170 000 90.0 HR15N Nitrided^{5} Nitralloy 135M
205 000 188 000 172 000 90.0 HR15N Nitrided^{5} Nitralloy N
216 000 196 000 176 000 90.0 HR15N Nitrided^{5} 2.5% chrome (no aluminum)

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.
1  Hardness to be equivalent to that at the start of active profile in the center of the face width.
2  See Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3  The steel selected must be compatible with the heat treatment process selected and hardness required.
4  These materials must be annealed or normalized as a minimum.
5  The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
*  Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting S_{t}  and  S_{c} of carburized and hardened steel gears.


From Fig. 14–15,

(Z_{N} )_{P} = 1.4488(10^8)^{−0.023} = 0.948
(Z_{N} )_{G} = 1.4488(10^8/3.059)^{−0.023} = 0.973

For the hardness ratio factor C_{H}, the hardness ratio is H_{BP}/H_{BG} = 240/200 = 1.2.
Then, from Sec. 14–12,

A^{′} = 8.98(10^{−3})(H_{BP}/H_{BG}) − 8.29(10^{−3})
= 8.98(10^{−3})(1.2) − 8.29(10^{−3}) = 0.002 49

Thus, from Eq. (14–36),

C_{H} = 1.0 + A^{′}(m_{G} − 1.0)                    (14–36)

C_{H} = 1 + 0.002 49(3.059 − 1) = 1.005

(a) Pinion tooth bending. Substituting the appropriate terms for the pinion into Eq. (14–15) gives

σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & ( \text{U.S. customary units})\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (\text{SI units}) \end{cases}                     (14-15)

(σ )_{P} =\left( W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F} \frac{K_{m}K_{B}}{J}\right)_{P} = 164.8(1)1.377(1.043) \frac{10}{1.5} \frac{1.22 (1)}{0.30}

= 6417 psi

Substituting the appropriate terms for the pinion into Eq. (14–41) gives

S_{F} =\frac{S_{t}Y_{N} /(K_{T} K_{R})}{σ} =\frac{fully  corrected bending  strength}{bending  stress}                (14–41)

(S_{F} )_{P} =\left(\frac{S_{t}Y_{N} /(K_{T} K_{R})}{σ}\right)_{P} =\frac{31 350(0.977)/[1(0.85)]}{6417} = 5.62

Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15) gives

(σ )_{G} = 164.8(1)1.377(1.052) \frac{10}{1.5} \frac{1.22(1)}{0.40} = 4854  psi

Substituting the appropriate terms for the gear into Eq. (14–41) gives

(S_{F} )_{G} =\frac{28 260(0.996)/[1(0.85)]}{4854} = 6.82

(b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16) gives

σ_{c} =\begin{cases} C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{m}}{d_{P }F} \frac{C_{f}}{I}} & (\text{U.S. customary  units}) \\ C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{H}}{d_{w1}b} \frac{Z_{R}}{Z_{I}}}& (\text{SI  units}) \end{cases}                              (14-16)

(σ_{c})_{P} = C_{p} \left(W^{t} K_{o}K_{v}K_{s} \frac{K_{m}}{d_{P} F} \frac{C_{f}}{I}\right)^{1/2}_{P}

= 2300 \left[ 164.8(1)1.377(1.043) \frac{1.22}{1.7(1.5)} \frac{1}{0.121}\right]^{1/2}= 70 360  psi

Substituting the appropriate terms for the pinion into Eq. (14–42) gives

S_{H} =\frac{S_{c}Z_{N}C_{H}/(K_{T} K_{R})}{σ_{c}} =\frac{\text{fully  corrected  contact  strength}}{\text{contact  stress}}                   (14–42)

(S_{H})_{P} =\left[ \frac{S_{c}Z_{N} /(K_{T} K_{R})}{σ_{c}}\right]_{P} =\frac{106  400(0.948)/[1(0.85)]}{70  360} = 1.69

Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is K_{s}. Thus,

(σ_{c})_{G} =\left[\frac{(K_{s})_{G}}{(K_{s})_{P}}\right]^{1/2}(σ_{c})_{P} =\left(\frac{1.052}{1.043}\right)^{1/2}70  360 = 70  660  psi

Substituting the appropriate terms for the gear into Eq. (14–42) with C_{H} = 1.005 gives

(S_{H})_{G} =\frac{93 500(0.973)1.005/[1(0.85)]}{70 660} = 1.52

(c) For the pinion, we compare (S_{F})_{P} with (S_{H})^{2}_{P} , or 5.73 with 1.69^{2} = 2.86, so the threat in the pinion is from wear. For the gear, we compare (S_{F})_{G} with (S_{H})^{2}_{G}, or 6.96 with 1.52^{2} = 2.31, so the threat in the gear is also from wear.


Table 14–9
Empirical Constants A, B, and C for Eq. (14–34), Face Width F in Inches∗ Source: ANSI/AGMA 2001-D04.

C B A Condition
−0.765(10^{−4}) 0.0167 0.247 Open gearing
−0.930(10^{−4}) 0.0158 0.127 Commercial, enclosed units
−0.926(10^{−4}) 0.0128 0.0675 Precision, enclosed units
−0.822(10^{−4}) 0.0102 0.00360 Extraprecision enclosed gear units

*See ANSI/AGMA 2101-D04, pp. 20–22, for SI formulation.

14.17
14.18
14.11
14.2a
14.4
14.15
14.15

Related Answered Questions