Question 11.P.3: Consider the scattering of a particle of mass m from a hard ...

Consider the scattering of a particle of mass m from a hard sphere potential: V(r) = ∞ for r < a and V(r) = 0 for r > a.

(a) Calculate the total cross section in the low-energy limit. Find a numerical estimate for the cross section for the case of scattering 5 keV protons from a hard sphere of radius a = 6 fm.

(b) Calculate the total cross section in the high-energy limit. Find a numerical estimate for the cross section for the case of 700MeV protons with a = 6 fm.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) As the scattering is dominated at low energies by s-waves, l = 0, the radial Schrödinger equation is

-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(r)}{d r^{2}}=E u(r) \quad(r>a),             (11.155)

where u(r) = r R(r). The solutions of this equation are

u(r)= \begin{cases}u_{1}(r)=0, & r<a, \\ u_{2}(r)=A \sin \left(k r+\delta_{0}\right), & r>a,\end{cases}                  (11.156)

where k^{2}=2 m E / \hbar^{2}. The continuity of u(r) at r = a leads to

\sin \left(k a+\delta_{0}\right)=0 \quad \Longrightarrow \quad \tan \delta_{0}=-\tan (k a) \quad \Longrightarrow \quad \sin ^{2} \delta_{0}=\sin ^{2}(k a),             (11.157)

since \sin ^{2} \alpha=1 /\left(1+\cot ^{2} \alpha\right). The lowest value of the phase shift is \delta_{0}=-k a; it is negative, as it should be for a repulsive potential. An insertion of \sin ^{2} \delta_{0}=\sin ^{2}(k a) into (11.104)

\frac{d \sigma}{d \Omega}=\left|f_{0}\right|^{2}=\frac{1}{k^{2}} \sin ^{2} \delta_{0}, \quad \sigma=4 \pi\left|f_{0}\right|^{2}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \quad(l=0).              (11.104)

yields

\sigma_{0}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0}=\frac{4 \pi}{k^{2}} \sin ^{2}(k a).              (11.158)

For low energies, ka « 1, we have \sin (k a) \simeq k a and hence \sigma_{0} \simeq 4 \pi a^{2}, which is four times the classical value \pi a^{2}.

To obtain a numerical estimate of (11.158), we need first to calculate k^{2}. For this,we need simply to use the relation E=\hbar^{2} k^{2} /\left(2 m_{p}\right)=5 keV, since the proton moves as a free particle before scattering. Using m_{p} c^{2}=938.27 MeV and \hbar c=197.33 MeV fm, we have

k^{2}=\frac{2 m_{p} E}{\hbar^{2}}=\frac{2\left(m_{p} c^{2}\right) E}{(\hbar c)^{2}}=\frac{2(939.57 MeV )\left(5 \times 10^{-3} MeV \right)}{(197.33 MeV fm )^{2}}=0.24 \times 10^{-3} fm ^{-2}.       (11.159)

Thus k=0.0155 fm ^{-1}; the wave shift is given by \delta_{0}=-k a=-0.093 rad =-5.33^{\circ}.

Inserting these values into (11.158), we obtain

\sigma=\frac{4 \pi}{0.24 \times 10^{-3} fm ^{-2}} \sin ^{2}(5.33)=449.89 fm ^{2}=4.5 \text { barn }.              (11.160)

(b) In the high-energy limit, ka » 1, the number of partial waves contributing to the scattering is large. Assuming that l_{\max } \simeq k a, we may rewrite (11.102)

\sigma=\sum_{l=0}^{\infty} \sigma_{l}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l},            (11.102)

as

\sigma=\frac{4 \pi}{k^{2}} \sum_{l=0}^{l_{\max }}(2 l+1) \sin ^{2} \delta_{l}.               (11.161)

Since somany values of l contribute in this relation, we may replace \sin ^{2} \delta_{l} by its average value, \frac{1}{2}; hence

\sigma \simeq \frac{4 \pi}{k^{2}} \frac{1}{2} \sum_{l=0}^{l_{\max }}(2 l+1)=\frac{2 \pi}{k^{2}}\left(l_{\max }+1\right)^{2}.              (11.162)

where we have used \sum_{l=0}^{n}(2 l+1)=(n+1)^{2}. Since l_{\max } \gg 1 we have

\sigma \simeq \frac{2 \pi}{k^{2}} l_{\max }^{2}=\frac{2 \pi}{k^{2}}(k a)^{2}=2 \pi a^{2}.                (11.163)

Since a = 6 fm, we have \sigma \simeq 2 \pi(6 fm )^{2}=226.1 fm ^{2}=2.26 \text { barn }. This is almost half the value obtained in (11.160).

In conclusion, the cross section from a hard sphere potential is (a) four times the classical value, \pi a^{2}, for low-energy scattering and (b) twice the classical value for high-energy scattering.

Related Answered Questions