Since V(\vec{r}) is not spherically symmetric, the differential cross section can be obtained from (11.66):
\frac{d \sigma}{d \Omega}=|f(\theta, \varphi)|^{2}=\frac{\mu^{2}}{4 \pi^{2} \hbar^{4}}\left|\int e^{i \vec{q} \cdot \vec{r}^{\prime}} V\left(\vec{r}^{\prime}\right) d^{3} r^{\prime}\right|^{2}, (11.66)
\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int V_{0}[\delta(\vec{r}-a \vec{k})+\delta(\vec{r}+a \vec{k})] e^{i \vec{q} \cdot \vec{r}} d^{3} r\right|^{2}=\frac{m^{2} V_{0}}{4 \pi^{2} \hbar^{4}}|I|^{2}. (11.173)
Since \delta(\vec{r} \pm a \vec{k})=\delta(x) \delta(y) \delta(z \pm a) we can write the integral I as
I=\int \delta(x) e^{i x q_{x}} d x \int \delta(y) e^{i y q_{y}} d y \int[\delta(z-a)+\delta(z+a)] e^{i z q_{z}} d z
=e^{i a q_{z}}+e^{-i a q_{z}}=2 \cos \left(a q_{z}\right). (11.174)
The calculation of qz is somewhat different from that shown in (11.67).
q=\left|\overrightarrow{k_{0}}-\vec{k}\right|=\sqrt{k_{0}^{2}+k^{2}-2 k k_{0} \cos \theta}=k \sqrt{2\left(1-\cos ^{2} \theta\right)}=2 k \sin \left(\frac{\theta}{2}\right). (11.67)
Since the incident particle is initially traveling along the z-axis, and since it scatters elastically from the potential V(\vec{r}), the magnitudes of its momenta before and after collision are equal. So, as shown in Figure 11.8, we have q_{z}=q \sin (\theta / 2)=2 k \sin ^{2}(\theta / 2), since q=\left|\vec{k}_{0}-\vec{k}\right|=2 k \sin (\theta / 2). Thus, inserting I=2 \cos \left(a q_{z}\right)=2 \cos \left[2 a k \sin ^{2}(\theta / 2)\right] into (11.173), we obtain
\frac{d \sigma}{d \Omega}=\frac{m^{2} V_{0}}{\pi^{2} \hbar^{4}} \cos ^{2}\left(2 a k \sin ^{2} \frac{\theta}{2}\right). (11.175)
The total cross section can be obtained at once from (11.175):
\sigma=\int \frac{d \sigma}{d \Omega} \sin \theta d \theta d \varphi=2 \pi \int_{0}^{\pi} \frac{d \sigma}{d \Omega} \sin \theta d \theta
=2 \pi \frac{m^{2} V_{0}}{\pi^{2} \hbar^{4}} \int_{0}^{\pi} \sin \theta \cos ^{2}\left(2 a k \sin ^{2} \frac{\theta}{2}\right) d \theta, (11.176)
which, when using the change of variable x=2 a k \sin ^{2}(\theta / 2) with d x=2 a k \sin (\theta / 2) \cos (\theta / 2) d \theta, leads to
\sigma=\frac{2 m^{2} V_{0}}{\pi \hbar^{4}} \int_{0}^{\pi} 2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \cos ^{2}\left(2 a k \sin ^{2} \frac{\theta}{2}\right) d \theta
=\frac{2 m^{2} V_{0}}{\pi a k \hbar^{4}} \int_{0}^{1} \cos ^{2}(x) d x
=\frac{m^{2} V_{0}}{\pi a k \hbar^{4}} \int_{0}^{1}[1+\cos (2 x)] d x
=\frac{m^{2} V_{0}}{\pi a k \hbar^{4}}. (11.177)